TY - RPRT T1 - Unique Entity Estimation with Application to the Syrian Conflict Y1 - 2017 A1 - Chen, B. A1 - Shrivastava, A. A1 - Steorts, R. C. KW - Computer Science - Data Structures and Algorithms KW - Computer Science - Databases KW - Statistics - Applications AB - Entity resolution identifies and removes duplicate entities in large, noisy databases and has grown in both usage and new developments as a result of increased data availability. Nevertheless, entity resolution has tradeoffs regarding assumptions of the data generation process, error rates, and computational scalability that make it a difficult task for real applications. In this paper, we focus on a related problem of unique entity estimation, which is the task of estimating the unique number of entities and associated standard errors in a data set with duplicate entities. Unique entity estimation shares many fundamental challenges of entity resolution, namely, that the computational cost of all-to-all entity comparisons is intractable for large databases. To circumvent this computational barrier, we propose an efficient (near-linear time) estimation algorithm based on locality sensitive hashing. Our estimator, under realistic assumptions, is unbiased and has provably low variance compared to existing random sampling based approaches. In addition, we empirically show its superiority over the state-of-the-art estimators on three real applications. The motivation for our work is to derive an accurate estimate of the documented, identifiable deaths in the ongoing Syrian conflict. Our methodology, when applied to the Syrian data set, provides an estimate of $191,874 \pm 1772$ documented, identifiable deaths, which is very close to the Human Rights Data Analysis Group (HRDAG) estimate of 191,369. Our work provides an example of challenges and efforts involved in solving a real, noisy challenging problem where modeling assumptions may not hold. JF - arXiv UR - https://arxiv.org/abs/1710.02690 ER - TY - JOUR T1 - Entity Resolution with Empirically Motivated Priors JF - ArXiv Y1 - 2014 A1 - Steorts, R. C. KW - Statistics - Methodology AB - Databases often contain corrupted, degraded, and noisy data with duplicate entries across and within each database. Such problems arise in citations, medical databases, genetics, human rights databases, and a variety of other applied settings. The target of statistical inference can be viewed as an unsupervised problem of determining the edges of a bipartite graph that links the observed records to unobserved latent entities. Bayesian approaches provide attractive benefits, naturally providing uncertainty quantification via posterior probabilities. We propose a novel record linkage approach based on empirical Bayesian principles. Specifically, the empirical Bayesian--type step consists of taking the empirical distribution function of the data as the prior for the latent entities. This approach improves on the earlier HB approach not only by avoiding the prior specification problem but also by allowing both categorical and string-valued variables. Our extension to string-valued variables also involves the proposal of a new probabilistic mechanism by which observed record values for string fields can deviate from the values of their associated latent entities. Categorical fields that deviate from their corresponding true value are simply drawn from the empirical distribution function. We apply our proposed methodology to a simulated data set of German names and an Italian household survey, showing our method performs favorably compared to several standard methods in the literature. We also consider the robustness of our methods to changes in the hyper-parameters. UR - http://arxiv.org/abs/1409.0643 IS - 1409.0643 ER -