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Computational social science

“Computational social science is the study of social phenomena
using digitized information and streaming data along with
computational and statistical methods.”

-based on definition from Modeling Topic-Partitioned Network
Structure, Hanna Wallach, NIPS, 2015
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Social processes, entities, and clusters

[picture from Modeling Topic-Partitioned Network Structure,
Hanna Wallach, NIPS, 2015]
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Structure

[picture from Modeling Topic-Partitioned Network Structure,
Hanna Wallach, NIPS, 2015]
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Clustering

• Popular clustering approaches have limitations.

• Number of data points per cluster is not expected to grow
without bound.

• Propose new clustering model(s) that captures this behavior.

• Applications: Medical data, official statistics, author
disambiguation, investigative journalism, human rights
violations, customer and transaction records, credit reports,
and others.
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Motivation: Campaign Finance Data (100K records)
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Chinese Restaurant Process anyone?
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Second Motivation: Syrian Conflict

Cluster Size
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Problem of interest: what is the death toll for the Syrian conflict?
Data: Four human rights data sets with duplicated death records.
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Many clustering tasks require models that assume cluster sizes
grow linearly with the size of the data set.

Classic examples are the Dirichlet process (DP) and the Chinese
Restaurant Process (CRP).

More generally, we think of all infinite mixture models (Pitmor-Yor
Process (PYP) and the Kingman Paintbox).

We review infinite mixture models and contrast these with our
approach.
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Clusters and Partitions
To cluster N data points x1, . . . , xN using a partition-based
Bayesian clustering model, one first places a prior over partitions of
[N] = {1, . . . ,N}.

Let CN be a random partition of [N].

CN is implicitly represented by a set of cluster assignments
z1, . . . , zN .
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Clusters and Partitions

• No ordering imposed here.
• Also, records can only belong to one cluster assignment.

(Don’t confuse this with topic modeling).
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Infinite mixture model

One regards these cluster assignments as the first N elements of an
infinite sequence z1, z2, . . ., drawn a priori from

π ∼ H and z1, z2, . . . |π
iid∼ π, (0.1)

where

• H is a prior over π and

• π is a vector of mixture weights with∑
`

π` =1 and π` ≥ 0

for all `.
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Common mixture models

1 Finite mixtures where the dimensionality of π is fixed and H is
usually a Dirichlet distribution;

2 Finite mixtures where the dimensionality of π is a random
variable (Richardson and Green, 1997; Miller and Harrison,
2015),

3 Dirichlet process (DP) mixtures where the dimensionality of π
is infinite (Sethuraman, 1994),

4 Pitman Yor process (PYP) mixtures, which generalize DP
mixtures (Ishwaran and James, 2003).
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The Kingman Paintbox
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The Kingman Paintbox

For clustering, the de Finetti mixing measure that gives rise to
exchangeability is the Kingman paintbox.

As we will see, Kingman will not be suitable to record linkage tasks.
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Microclustering

A sequence of random partitions (CN : N = 1, 2, . . .) exhibits the
microclustering property if MN is op(N), where MN is the size of
the largest cluster in CN .

A clustering model exhibits the microclustering property if CN

implied by that model satisfies the above definition.
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Microclustering and Mixture Models

• No mixture model can exhibit the microclustering property
(unless its parameters are allowed to vary with N).

• Kingman’s paintbox theorem implies that any exchangeable
partition of N is

1 either equal to the trivial partition in which each part contains
one element or

2 satisfies lim infN→∞ MN /N > 0 with positive probability.
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Microclustering and Mixture Models (continued)

• By Kolmogorov’s extension theorem, a sequence of random
partitions (CN : N = 1, 2, . . .) corresponds to an exchangeable
random partition of N whenever

(a) each CN is exchangeable and
(b) the sequence is consistent in distribution1

• Therefore, to obtain a nontrivial model that exhibits the
microclustering property, one must sacrifice either (a) or (b).

• Wallach et al. (2010) sacrificed (a). We instead sacrifice (b).

1i.e., if N ′<N, the distribution of CN′ coincides with the marginal of CN′

obtained using the distribution of CN .
18



Our Approach

• Propose a model that satisfies the microclustering property.

• Seek flexible and robust models.

• New sampling algorithm.

• Initial results on simulated and real data with comparisons to
infinite mixture models.

[Miller, Betancourt, Zaidi, Wallach, and Steorts (2015),
http://arxiv.org/abs/1512.00792]
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A Microclustering Model

Let K be the potential number of clusters. Define N =
∑K

k=1Nk .

K ∼ NegBin (a, q) and N1, . . . ,NK |K
iid∼ NegBin (r , p),

for a, r > 0 and q, p ∈ (0, 1).

Given N1, . . . ,NK , generate a set of cluster assignments z1, . . . , zN
by drawing a vector uniformly at random from the set of
permutations of

(1, . . . , 1︸ ︷︷ ︸
N1 times

, 2, . . . , 2︸ ︷︷ ︸
N2 times

, . . . . . . ,K , . . . ,K︸ ︷︷ ︸
NK times

).
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The Marginal Distribution

Marginal distribution of CN leads to a type of reseating algorithm.
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A Reseating Algorithm

Consider P(CN |N,CN \n), where CN \n is the partition obtained
by removing element n from CN :

• for n = 1, . . . ,N, reassign element n to
• an existing cluster c ∈ CN \n with probability ∝ |c |+ r ,
• a new cluster with probability ∝ (|CN \n|+ a)βr .

There isn’t a richer get richer property induced!
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Preliminary Results

• Compare our methods models to several commonly used
infinitely exchangeable clustering models: mixtures of finite
mixtures MFM, DP mixtures, and PYP mixtures.

• We assess how well each model “fits” partitions using prior
predictive checks.

• The prior predictive checks are evaluated at the MLE for the
various models.

• We assess “fit” based on “summary statistics,” e.g,
singletons, quantiles, etc.
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The Data

• Survey data from Italy.

• 74% of data are singletons.

• Ground truth from social security numbers.
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Prior predictive checks
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Why do we do better?
1 Theoretically, we’re handling the problem correctly. (Using an

infinite process is“cheating.”)
2 We do better than the DPMs and MFMs in situations when

the data has lots of singletons.
3 Why does the GPois do better?
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How does one do inference?

In real world clustering tasks, data points x1, . . . , xn and N are
observed.

CN is latent.

Recall |CN | denotes the size of the partition CN , which may be
smaller than K . Hence, the number of entities is denoted by |CN |.

For illustration, we assume the clustering task is record linkage.
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Inference for record linkage
Assume records x`n where:

• ` indexes the features within a record (gender, DOB, etc)

• n indexes how many records we observe.

Let ζ :
⋃∞

N=0(CN × [N])→ {1, 2, . . .} be a function that maps a
partition CN and a record n to its latent cluster assignment.2 Then

CN ∼ NBNB(a, q, r , p) (0.2)

zn | CN = ζ(CN , n) (0.3)

x`,n ∼ DirichletMultinomial(δ`), (0.4)

where δ` is assumed known. When m(xc) can easily be computed
for any element c , then we can easily sample from the posterior on
partitions, p(CN | x1, . . . , xn)

2For example, ζ ({{1, 3, 4}, {2, 5}, {6}}, 4) = 1,
ζ ({{1, 3, 4}, {2, 5}, {6}}, 6) = 3 because in this partition, record 4 is in
cluster 1, while record 6 is in cluster 3.
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Inference on Italian Survey Data

We return to the Italian survey data

We work with 9 categorical variables about income and wealth.

• We do comparisons with other models.

• We look also at the FNR and FDR.
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Table: Results with database with 9 variables. The true number of
clusters is 587.

Prior K̂ SD FNR FDR

DP 609.4 3.25 0.371 0.471
PYP 621.5 2.78 0.376 0.408

PERPS 606.5 3.13 0.381 0.416
NBNB 620.1 2.33 0.376 0.411

All models overestimate K .

DP and PERPS do the best in terms of a best estimate with error
rates.

NBNB and PYP do slightly worse in terms of inference.
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Reseating algorithms

In general, these reseating algorithms are quite slow (due to
partitioning) and may be slow to mix!

Propose a solution to this that is similar in spirit to Jain and Neal
(2007).
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You need a chaperone (actually two)!

• Let CN denote a partition of [N] and let x1, . . . , xN denote the
N observed data points.

• If we let cn ∈ CN denote the cluster containing element n,
then each iteration consists of:

1 Randomly choose two chaperones, i , j ∈ {1, . . . ,N} from a
distribution P(i , j | x1, . . . , xN) where the probability of i and j
given x1, . . . , xN is greater than zero for all i 6= j .
• This distribution must be independent of the current state of

the Markov chain CN ; however, crucially, it may depend on the
observed data points x1, . . . , xN .

2 Reassign each n ∈ ci ∪ cj by sampling from
P(CN |N,CN \n, ci ∪ cj , x1, . . . , xN).
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What do these moves look like?

Figure: Two clusters: C1 and C2 with assigned elements 1,2,3 and 4,5,6,7
respectively.
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Four toy iterations of ”chaperones”
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Properties

1 The algorithm is geometrically ergodic.

2 Not restricted to uniform moves.

3 This “should” help with better mixing.

4 Understanding how to pick good restricted Gibbs moves is in
progress.
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Coming soon to a conference near you...

• Inference for all models with comparisons.

• Scalable MCMC using chaperones approach.

• Applying this to data from the Syria conflict (duplicated
deaths).

Ongoing work with Jeff Miller, Brenda Betancourt, Abbas Zaidi
(Duke University), Hanna Wallach (MSR and UMass Amherst) and
Giacomo Zanella (University of Warick).
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Thank you!
Questions?

beka@stat.duke.edu

Thank you to the John Templeton Foundation (Metaknowlege
Network) and to NSF SES 1534412 for support of this research.
Disclaimer: This work is the view point of the researchers alone

and not the funding agencies/foundations.
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