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General Data Fusion Framework

• In many applications, analysts seek to combine two or more databases
containing information on disjoint sets of individuals and distinct sets of
variables

• Why?
• Single-source data difficult to obtain due to limited resources (e.g., time,

money, or participation)

• Availability of data varies across sources (e.g., behavior versus opinion)
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Applications

• Examples:
• Marketing: purchasing habits and media viewing habits, e.g., products one

purchases and television channels one watches (Gilula et al., 2006)

• Business: customer satisfaction with bank staff and measures of impor-
tance of the customer monetarily to the bank such as funds, number of
transactions (Kamakura and Wedel, 1997)

• Health: cigarette smoking status and opinions about smoking in public
(Gilula and McCulloch, 2013)

• Government and economics: combining microdata from sample surveys
(Moriarty and Scheuren, 2003)
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File Concatenation

• The problem occurs whenever a researcher needs to consolidate results
obtained from two independent samples

• Rubin (1986) emphasizes that data fusion, or file concatenation, can be
cast as a missing data problem

• Missing data mechanism is deterministic, i.e., ignorable

• Early work (1980s and 1990s) focused on continuous variables

• Frequently in applications, all variables are categorical
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Common Categorical Data Fusion Methods

• Statistical matching or hot-deck procedures based on A
• Hot-deck procedures duplicate data on basis of some heuristic

• Missing values from sample 1 (recipient) are replaced with values from
sample 2 (donor)

• If variables are quantitative, match based on some distance function

• Perfect matching, perhaps based on subset of “critical variables”

• Form disjoint clusters (imputation groups) based on A

• Model-based procedures
• Estimate regression models P(B | A) and P(B′ | A), and use these to

predict missing B and B′

• Estimate models for the joint P(A,B,B′)

• Multinomial distribution with log-linear model constraints

• Latent-class model (Kamakura and Wedel, 1997)
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Identification Problem

• Goals:
? Fuse databases D1 on {A,B} and D2 on {A,B′} to make inference on dis-

tributional quantities, functionals of P(A,B,B′)

? Generate complete data files that are representative of the population

• {A,B,B′} never observed simultaneously→ P(A,B,B′) not identifiable
based on D1 and D2 alone

• Marginals P(A,B) and P(A,B′) constrain P(A,B,B′), but many possible
specifications of the joint may be consistent with the observed marginal
distributions

• The data provide no information on which specifications to favor!
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Typical Assumptions

• Generally proceed by making strong and unverifiable assumptions

• Standard (implicit) assumption: B and B′ are independent given A

• Reasonableness of this assumption depends on richness of A variables
and {B,B′} dependence

• Ex: every person with the same age, gender, race has the same probabil-
ity of purchasing an apple computer regardless of media viewing habits

• In some demographics groups, those who do not see ads due to lack of
TV/Internet activity may be less likely to purchase product
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Relaxing Conditional Independence

Previous work relaxing this assumption:

• Rubin (1986) proposes a sensitivity analysis to values of the partial cor-
relation

• Gilula et al. (2006) propose adding information through a prior on the
partial correlation when B and B′ are binary

• Gilula and McCulloch (2013) extend this approach to handle variables
with more than 2 categories
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Our Approach to Relaxing Conditional Independence

Technological advances in recent decades create new exciting opportunities
for survey administration.

We consider a situation where auxiliary information, i.e. glue, is available or
obtainable.
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Glue

We make two assumptions about the glue:
• Represented as additional observations on subsets of {A,B,B′}
• Each glue observation contains at least one variable in B and one variable

in B′
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Glue Types

Possible types of glue:

1 Select pairs of variables, e.g. Bi and B′j

2 All B and B′ variables

3 All B and B′ variables, some A variables

4 All {A,B,B′} variables

How can analysts leverage information in these supplementary surveys for
more accurate fusion?
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HarperCollins Publishers

• HarperCollins Publishers is one of the world’s largest publishing com-
panies

• Contracts research agencies to use stratified sampling procedures to sur-
vey people’s book buying and reading habits in each country

• Surveys of U.S. population: Pilot (book discovery), Adult (author read-
ership), Product (product utilization), . . .

• Each survey consists of
• basic demographic and reading questions

• survey specific questions
• All variables are categorical; a common feature in data fusion applica-

tions
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HarperCollins Fusion Problem

HarperCollins is interested in understanding the relationship between

1 How an individual becomes aware of an author or book (Pilot survey)
• on Best Seller List?

• through Facebook?

• seeing the book/author’s name in a library?

• ...

2 Which authors an individual prefers (Adult survey)
• Stephenie Meyer

• Suzanne Collins

• Agatha Christie

• ...

Goal: Combine information in Pilot and Adult surveys to make
inference
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CivicScience

• CivicScience is an Internet polling company that offers real-time insights
on public opinion by surveying thousands of people daily

• Surveys are voluntary and available on various internet websites

• Each survey consists of at least the following questions:
1 Engagement (e.g., Who will win the Superbowl?)

2 Value (question(s) asked on behalf of paying client)

3 Profile (demographics)
• Participants may answer additional questions

• Able to connect responses from multiple surveys for some users

• CivicScience was our “glue collector” asking about author readership or
discovery (Q2), and gender or age (Q3)
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Flexible Bayesian model for multivariate categorical data

• Yij ∈ {1, . . . , dj}, for j = 1, . . . , p, i = 1, . . . , n forms a contingency
table with

∏p
j=1 dj cells

• Dirichlet process (DP) mixture of product-multinomials (DPM-PM; Dun-
son and Xing, 2009) for multivariate categorical data

Yi1, . . . ,Yip|Zi, φ ∼
p∏

j=1

categorical(φ(j)
zi,1, ..., φ

(j)
zi,dj

), i = 1, . . . , n

Pr(Zi = h | π) = πh, i = 1, . . . , n, h = 1, . . . ,N

πh = Vh

h−1∏
g=1

(1− Vg), h = 1, . . . ,N

Vh ∼ Beta(1, α), h = 1, . . . ,N − 1, VN = 1

φ
(j)
h ∼ Dirichlet(a(j)

1 , ..., a(j)
dj
), h = 1, . . . ,N, j = 1, . . . , p

α ∼ gamma(aα, bα)
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Properties

• Parsimoniously represents the joint distribution of numerous variables

P (Yi = (yi1, ..., yip) | π, φ) =
N∏

k=1

πk

p∏
j=1

φ
(j)
k,yij

• attractive properties: full support (flexible) and consistent

• computationally tractable

• No need to determine optimal number of classes, just fix truncation level
N large

• MCMC requires only Gibbs samplers

• Missing Yij easily imputed during MCMC
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Incorporating Glue

• Databases D1 of size n1 on {A,B} and D2 of size n2 on {A,B′}
• Yij for j ∈ A is observed for all n1 + n2 individuals

• Yij for j ∈ B is observed for n1 individuals in D1

• Yij for j ∈ B′ is observed for n2 individuals in D2

• Item nonresponse→ missing values within D1 and D2 also
• Assume glue Ds of size ns containing subset of {A,B,B′}

• Concatenate (D1,D2,Ds) in one file and estimate DPM-PM model, in
process imputing missing B in D1 and missing B′ in D2, but not missing
values in Ds

• Information on {A,B,B′} in Ds influences parameter estimates resulting
in imputations for B and B′ that reflect dependence in glue

17 / 36



Introduction Motivating Application Methodology HarperCollins Data with CivicScience Glue Closing Remarks

Incorporating Glue

• Databases D1 of size n1 on {A,B} and D2 of size n2 on {A,B′}
• Yij for j ∈ A is observed for all n1 + n2 individuals

• Yij for j ∈ B is observed for n1 individuals in D1

• Yij for j ∈ B′ is observed for n2 individuals in D2

• Item nonresponse→ missing values within D1 and D2 also
• Assume glue Ds of size ns containing subset of {A,B,B′}

• Concatenate (D1,D2,Ds) in one file and estimate DPM-PM model, in
process imputing missing B in D1 and missing B′ in D2, but not missing
values in Ds

• Information on {A,B,B′} in Ds influences parameter estimates resulting
in imputations for B and B′ that reflect dependence in glue

17 / 36



Introduction Motivating Application Methodology HarperCollins Data with CivicScience Glue Closing Remarks

Simulation study: HarperCollins Publishers

Product survey - 3567 respondents

A variables:
• Gender

• Age - { 18-24, 25-34, 35-44, 45-54, 55-64, 65+ }

• Income - { <25K, 25-45K, 45-75K, 75-99K, 100+ K, Prefer not say }

• Work status - { emp FT, emp PT, homemaker, retired, self-emp, other }

B variable:
• eBook reader ownership - { yes, no }

B′ variable:
• Reading hours per week - {<1 hour, 1-4 hours, 5+ hours}
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Simulation procedure

1 Randomly split data set to create fusion situation with missing B and B′

2 Consider the following glue scenarios:
• No glue

• {eBook (B), hours (B′)}

• {eBook (B), hours (B′), gender (Ag)}

• {eBook (B), hours (B′), age (Aa)}

• {eBook (B), hours (B′), gender (Ag), age (Aa)}

Glue contains the observed variables for all survey respondents

3 Estimate the DPM-PM model using MCMC

4 Obtain 120,000 samples of parameters saving 50 complete (imputed)
data files

19 / 36
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Quantifying the impact of glue

1. Hellinger distance 2−1/2
√∑K

i=1(
√

pi −
√

qi)2 between empirical
distribution of (Ag,Aa,B,B′) based on original complete survey and
posterior inferences

Table: Posterior distributions of the Hellinger distances for various glue types. 10
perfect matching data sets considered.

mean 95% CI or range*
no glue .104 (.094, .113)
{B,B′} .083 (.075, .091)
{B,B′,Ag} .077 (.071, .084)
{B,B′,Aa} .060 (.053, .068)
{B,B′,Ag,Aa} .052 (.047, .059)
Exact matching .100 .090 - .107
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Quantifying the impact of glue

2. Discrepancy between empirical imputed contingency table and true
contingency table yields expected number of misclassified individuals in
imputed data set:

1
50

50∑
m=1

0.5

∏p
k=1 dk∑
j=1

|nj − n̂(m)
j |


Table: Average number of individuals in incorrect cells of the contingency table over
the 50 imputed data files. 10 complete data sets considered for the statistical matching
procedure.

1
2 E
(∑k

j=1 |nj − n̂j|)
)

no glue 318
{B,B′} 250
{B,B′,Ag} 247
{B,B′,Aa} 199
{B,B′,Ag,Aa} 196
Exact matching 315
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Quantifying the impact of glue

3. Logistic regression model coefficients

logit(p(eBook = 1)) = β0 + βg1(gender = female) +
6∑

k=2

βa
k 1(age = k)

+

6∑
k=2

βw
k 1(work = k) +

6∑
k=2

βi
k1(income = k) +

3∑
k=2

βh
k 1(hours = k)

+ βhg1(hours = 5+, gender = female) + βha1(age = 65+, hours = 5+)

+ βhga1(age = 65+, hours = 5+, gender = female)

• Compare coefficients estimated by the model with those estimated on the true
complete data

• A more focused evaluation
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Logistic regression coefficient estimates
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Figure: No glue
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Nonrepresentative Glue

• Voluntary Internet survey

• Over 60% of CivicScience respondents are 55+ compared to only 30%
of HarperCollins respondents

• {A,B,B′} from supplemental survey data is not representative of the
joint from (D1,D2)
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Figure: Age distributions of respondents.
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Nonrepresentative Glue

• A common problem to be encountered in practice from convenience or
non-probability samples

• Problems can arise even when appending glue that is representative of
the population in terms of P(B,B′ | A) but not on A

Suppose nA = nB = nB′ = 1 and all variables are binary
• Glue collection procedure extremely oversamples subpopulation with

A = 1, but distribution of (B,B′|A) is representative

• Inference on (B,B′) distribution will heavily resemble P(B,B′|A = 1)

• If P(B,B′|A = 1) and P(B,B′|A = 2) differ greatly, inference for
P(B,B′|A = 2) and P(B,B′) will be of poor quality
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Incorporating nonrepresentative glue

We propose generating representative glue and then fitting the DPM-PM
model with the generated glue to obtain imputations and parameter
estimates.

Procedure for generating representative glue:
1 Fit the DPMPM model to the supplementary data alone to estimate P(A,B,B′),

from which one can obtain P(B|A,B′) and P(B′|A,B).
2 Sample records with replacement from databases (D1 and D2). Impute

missing B′ by sampling from P(B′|A,B) and impute missing B by sam-
pling from P(B|A,B′) estimated in (1).

Assessing validity of this procedure:
• This assumes the glue is representative of P(B|A,B′) and P(B′|A,B)
• Evaluate these assumptions by comparing the empirical P(B) and P(B′)

sampled in step (2) to those in the surveys
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Motivating question

HarperCollins is interested in understanding the relationship between

B: how an individual becomes aware of an author or book (Pilot survey)
• 6 discovery mediums (e.g Facebook, Best Seller List)

B′: which authors an individual prefers (Adult survey)
• 5 authors (e.g. Agatha Christie, Stephenie Meyer)

We aim to combine information from the Pilot (n1 = 2, 000) and Adult
(n = 5, 015) surveys to address this question.

A variables include gender, age, and income, of interest for market
segmentation.

CivicScience glue contains ns = 2, 730 observations containing at least one
{Bj,B′k} pair.
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Glue questions - Discovery & Author preferences

B: Do you become aware of new authors through ?

Answers: Yes, No

1 The Best Seller List
2 Facebook
3 Library
4 Online site
5 Recommendations from friends and family
6 Bookstore

B′: What is your experience with author ?

Answers: Read, Not read but interested, Not read and not interested

1 Lisa Kleypas (historical and contemporary romance novels)
2 Stephenie Meyer (e.g. Twilight)
3 Suzanne Collins (e.g. The Hunger Games trilogy)
4 Agatha Christie (detective novels and shorty stories)
5 Shel Silverstein (e.g. The Giving Tree)
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Generating representative CivicScience glue
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Figure: Left plot: empirical P(B) Right plot: empirical P(B′)

• Discrepancies evident between sampled P(B′) distribution and survey
P(B′)

• Choose to generate glue D∗s assuming only P(B|A,B′) representative
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Inference for HarperCollins

• Append the constructed D∗s to (D1,D2) and estimate the DPM-PM model
on the concatenated data

• Impute all missing values in D1 and D2 in the process

• Completed versions may be used for multiple imputation inference on
any functional of P(A,B,B′) HarperCollins desires

• Example: probability of discovery via a given medium for those who
have read a particular author
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Discovery Given Readership by Income
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Figure: Point estimates for Pr(B = yes | B′ = read, income) for low (left) and high
(right) income groups for all mediums and authors.

• Among individuals who have read Meyer, those with high incomes are very
likely to discover books at library, whereas those with low income are not.

• Low income individuals more likely to discover via Internet for all authors ex-
cept Kleypas.
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Discovery Given Readership by Age
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Figure: Estimates for Pr(B = yes | B′ = read, age) across age for 3 medium/author
combinations. Open circles indicate “no glue” estimates.

• Of individuals who have read Meyer, older individuals more likely to discover
through BSL

• Estimates without glue agree on trends sometimes (e.g., middle figure), but often
very different (left figure) 33 / 36
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Remaining Questions

• Simulations point to need for cost-benefit analysis to guide glue collec-
tion

• Cost of collecting glue increases with number of variables and observa-
tions

• Research on methods for selecting variables that improve the accuracy
of data fusion taking into account cost of variables

• Computational improvements – HarperCollins (and other companies)
would love if we could fuse all of their surveys on hundreds or thou-
sands of variables

• Come up with a better way to use information provided by glue that does
not involve fitting MCMC twice and avoids copying observations from
the surveys to form the representative glue (?Current work?)
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Thank you!

• Coauthors: Bailey Fosdick (CSU) and Jerry Reiter (Duke)

• Working group members from SAMSI program on Computational Meth-
ods in Social Sciences, 2013-2014

• HarperCollins Publishers

• CivicScience

• Thanks to the NCRN and the audience for your attention!
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Interested in This Topic?

• Email me: maria.deyoreo@stat.duke.edu

• Manuscript available on arXiv or my webpage
https://stat.duke.edu/∼mnd13/
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