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Dasymetric Modeling and Uncertainty
Nicholas N. Nagle,∗ Barbara P. Buttenfield,† Stefan Leyk,† and Seth Spielman†

∗Department of Geography, University of Tennessee, and Computational Sciences and Engineering Division,
Oak Ridge National Laboratory

†Department of Geography, University of Colorado at Boulder

Dasymetric models increase the spatial resolution of population data by incorporating related ancillary data
layers. The role of uncertainty in dasymetric modeling has not been fully addressed as of yet. Uncertainty is
usually present because most population data are themselves uncertain, or the geographic processes that connect
population and the ancillary data layers are not precisely known. A new dasymetric methodology—the penalized
maximum entropy dasymetric model (P–MEDM)—is presented that enables these sources of uncertainty to be
represented and modeled. The P–MEDM propagates uncertainty through the model and yields fine-resolution
population estimates with associated measures of uncertainty. This methodology contains a number of other
benefits of theoretical and practical interest. In dasymetric modeling, researchers often struggle with identifying
a relationship between population and ancillary data layers. The P–MEDM model simplifies this step by unifying
how ancillary data are included. The P–MEDM also allows a rich array of data to be included, with disparate
spatial resolutions, attribute resolutions, and uncertainties. Although the P–MEDM does not necessarily produce
more precise estimates than do existing approaches, it does help to unify how data enter the dasymetric model, it
increases the types of data that can be used, and it allows geographers to characterize the quality of their dasymetric
estimates. We present an application of the P–MEDM that includes household-level survey data combined with
higher spatial resolution data such as from census tracts, block groups, and land cover classifications. Key Words:
dasymetric modeling, maximum entropy, small area estimation.
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Los modeos dasimétricos aumentan la resolución espacial de los datos sobre población, incorporando capas de
datos auxiliares relacionados. El papel de la incertidumbre en la modelación dasimétrica todavı́a no ha sido
abocado plenamente. Casi siempre la incertidumbre aparece porque en sı́ mismos la mayorı́a de los datos sobre
población son inciertos, o porque los procesos geográficos que conectan a la población y las capas de datos auxiliares
no se conocen con precisión. Se presenta una nueva metodologı́a dasimétrica – el modelo dasimétrico de entropı́a
máxima penalizada (P–MEDM) que permite que estas fuentes de incertidumbre sean representadas y modeladas.
El P–MEDM propaga la incertidumbre a través del modelo y produce estimativos de población de resolución
fina, junto con medidas asociadas de incertidumbre. Esta metodologı́a tiene un número de beneficios adicionales
de interés teórico y práctico. Los investigadores que aplican la modelación dasimétrica a menudo tienen que
habérselas con la dificultad de identificar una relación entre la población y las capas de datos auxiliares. El modelo
P–MEDM simplifica este paso al unificar las maneras de incluir los datos auxiliares. El P–MEDM permite también
incluir un rico surtido de datos, con diversas resoluciones espaciales, resoluciones caracterı́sticas e incertidumbres.
Si bien el P–MEDM no necesariamente produce estimativos más precisos de lo que se consiguen con los enfoques
existentes, si ayuda a que se unifiquen las maneras como los datos entran al modelo dasimétrico, incrementa los
tipos de datos que pueden usarse y permite a los geógrafos caracterizar la calidad de sus estimativos dasimétricos.
Presentamos una aplicación del P–MEDM que incluye datos de estudios a nivel de hogares combinados con datos
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Dasymetric Modeling and Uncertainty 81

de resolución espacial más alta, tales como los de secciones censales, grupos de manzanas y clasificaciones de
cobertura del suelo. Palabras clave: modelación dasimétrica, entropı́a máxima, estimación de área pequeña.

R
esearchers often desire population data at finer
spatial resolutions than are publicly available.
Fine-resolution population data have been pro-

duced using such methods as areal interpolation, or-
dinary kriging, and dasymetric modeling. Dasymetric
modeling produces fine-resolution estimates by uti-
lizing relations between population distribution and
ancillary geographic layers (Figure 1). Examples of an-
cillary data commonly used include land cover (Mennis
2003), road density (Reibel and Bufalino 2005), slope
(Schumacher et al. 2000), nighttime lights (Briggs et al.
2007), Landsat Thematic Mapper data (Yuan, Smith,
and Limp 1997), light detection and ranging (LiDAR)-
derived building heights (Xie 2006; Kressler and Stein-
nocher 2008), IKONOS-derived land use classifica-
tion (Liu, Kyriakidis, and Goodchild 2008), parcel data
(Tapp 2010), and address points (Zandbergen 2011).

A common characteristic of these studies is the
integration of (1) population data, (2) ancillary data
layers, and (3) a model relating the two. Each of
these model inputs introduces its own uncertainty.
For instance, population data might be the result of
a sample survey rather than a complete enumeration,
or they might represent the population distribution
at a different point in time. Similarly, most geospatial

Figure 1. Dasymetric models utilize ancillary data to produce popu-
lation estimates at finer resolution. As shown here, coarse-resolution
population data are combined with a gridded land cover layer to pro-
duce a gridded estimate of population. This article presents a method
to track uncertainty from the input layers to the output map. (Color
figure available online.)

ancillary layers contain their own sources of error in
location or in attribution. Perhaps most important,
however, are the uncertainties that arise from trying
to quantitatively link or relate the population distri-
bution to the ancillary layers. The link between the
distribution of population and the distribution of other
spatial attributes is typically uncertain and is difficult to
quantify and assess. Population distributions can never
be completely characterized by deterministic relations
because they are sensitive to local contextual factors
such as cultural norms, local land use and housing reg-
ulations, local and regional environmental constraints,
and the vagaries of random chance and history.

Despite these many sources of uncertainty, dasymet-
ric techniques primarily treat this relational problem
as a deterministic problem and do not adopt quantita-
tive mechanisms for incorporating uncertainty. We pro-
pose a new methodology for dasymetric modeling that
takes uncertainty into account, whether arising through
uncertain population data, uncertain ancillary data, or
uncertain relationships between population and ancil-
lary data. Furthermore, this new methodology tracks
these uncertainties through the dasymetric model to
produce a measure of quality for the final population
estimates.

This new model is based on an extension of maxi-
mum entropy (ME) techniques and we call it the penal-
ized maximum entropy dasymetric model (P–MEDM).
ME techniques have been frequently used for “location-
allocation”-type problems in geography, in which an
initial population needs to be allocated among a vari-
ety of different locations (Johnston and Pattie 1993).
By themselves, ME techniques do not address the ef-
fects of uncertain input data layers, but we show how
these uncertainties can be addressed by adding penalties
to the ME. Furthermore, the P–MEDM model is shown
to naturally adapt to the varying qualities of input data,
allowing both high- and low-quality data to be utilized
simultaneously.

The benefits of the P–MEDM include the following:

1. It integrates population and ancillary data sources
with disparate levels of spatial and attribute reso-
lution.

2. It incorporates information about the known un-
certainty of the input population and ancillary
data.
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82 Nagle et al.

3. It incorporates information about uncertainty
about the estimated relationship between popula-
tion and ancillary data layers.

4. It produces output population estimates with
quantifiable uncertainty themselves, allowing
other researchers to assess the quality of the fi-
nal dasymetric products with regard to their own
intended uses.

A simple case demonstrates the benefits of the
P–MEDM. Because one of these benefits is its seam-
less ability to incorporate data of varying resolutions
and qualities, this case study includes household-level
data from the Public Use Microdata Sample (PUMS)
of the American Community Survey (ACS), tract- and
block-group-level summary data from the ACS, and
land cover information from the National Land Cover
Database (NLCD). The PUMS has extraordinary de-
mographic resolution in that it contains records of indi-
vidual households and the persons within them. It has
very coarse spatial resolution, however. The enumera-
tion districts for the PUMS (called public use micro-
data areas, or PUMAs) must contain at least 100,000
persons. Although it is possible to identify in which
PUMA a household lives, it is not possible to identify
the household’s location within the PUMA.

In contrast to the ACS microdata, the ACS census
tract and block group data are aggregates of many
households. These layers have finer spatial resolution
than the PUMS, but they have coarser demographic
resolution than the PUMS because they do not contain
descriptions of individual households or persons. The
ACS is a rolling sample of the American population.
On average, the ACS samples 135 households per
census tract over a five-year period, which are used
to estimate the characteristics of the tract. Tract-
and block-group-level data layers are available for
univariate population distributions, and some bivariate
distributions, but they do not contain the richness of
individual- and household-level data afforded by micro-
data. An additional problem when using ACS data for
small areas is that these data often have a large margin
of error. Because of the relatively small sample size of
the ACS compared to the previous decennial census
long form, tract- and block-group-level estimates might
be quite uncertain. The P–MEDM is able to account for
this.

Finally, the case study includes relatively fine spatial
resolution (30 m) land cover data from the NLCD.
These data, however, have relatively crude demo-

graphic characterization. Land cover data are valuable
because they serve as a proxy for demographic char-
acteristics through a chain of indirect links that tie
together land cover, land use, the type and density of
housing, and the type and quantity of people residing in
those houses. Thus, although land cover data have fine
spatial resolution, they have coarse demographic reso-
lution. The P–MEDM model allows this type of proxy
data to enter and play their own unique role within the
dasymetric model.

This application case study demonstrates new types
of analyses that are enabled by the P–MEDM. It also
demonstrates how the uncertainty estimates produced
by P–MEDM can provide signals to analysts indicating
the quality of a dasymetric model and, hence, to also in-
dicate appropriate and inappropriate uses of dasymetric
modeling more generally.

Areal Interpolation and Uncertainty

Areal interpolation is the process of downscaling
coarse-scale geographic data from source regions to a
finer target scale (Goodchild and Lam 1980). Areal in-
terpolation and dasymetric modeling are similar in that
both are methods for downscaling spatial data. Areal
interpolation differs from dasymetric modeling in that
it assumes that the boundaries of the target regions are
arbitrary and that the variable being interpolated varies
smoothly across the boundaries of the source and tar-
get regions. This smoothness assumption is explicit in
methods such as Tobler’s (1979) smooth pycnophylac-
tic interpolation and Kyriakidis’s (2004) area-to-area
and area-to-point ordinary kriging. In contrast, dasy-
metric modeling assumes that there are regions of ho-
mogeneous density, and dasymetric modeling seeks to
incorporate ancillary data that are able to identify the
boundaries between these regions as well as the dif-
ference in densities across the regions. Uncertainty is
reduced in dasymetric models if the boundaries between
target regions correspond to real boundaries in the pop-
ulation surface. This assumption—whether the popula-
tion surface is a smooth or a discrete surface with sharp
boundaries—influences the nature of interpolation and
the strategies chosen to address uncertainty (Goodchild
and Lam 1980; Goodchild, Anselin and Deichmann
1995).

Assumptions about the nature of boundaries af-
fect the kinds of ancillary information that are used
for downscaling. The ancillary information in the
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Dasymetric Modeling and Uncertainty 83

smoothing methods includes information about the spa-
tial structure (spatial autocovariance) of the population
surface; the ancillary information in dasymetric meth-
ods includes information that identifies boundaries of
homogeneous regions on the population surface. Stated
differently, smoothing methods assume that the best
ancillary information is information about the spatial
autocorrelation of the population surface (i.e., the tar-
get variable itself), whereas dasymetric methods assume
that the best information is information about the cor-
relation between population and ancillary data at the
same location. Both of these methods, however, involve
interpolating the population to an unknown target re-
gion and thus introduce uncertainty.

Many studies have been conducted to identify the
sources of uncertainty in areal interpolation methods.
In general, uncertainty is found to increase with larger
source regions and smaller target regions (Sadahiro
2000). Ancillary data that can effectively define homo-
geneous regions also reduce uncertainty. Zandbergen
and Ignizio (2010) compared different types of ancillary
data and concluded that no one source of ancillary
data is superior in all instances, but they did suggest
that land cover data are relatively robust ancillary data
for modeling population density. Furthermore, the
variations between these methods can have significant
impacts for subsequent spatial analysis. Maantay,
Maroko, and Herrmann (2007) and Maantay, Maroko,
and Porter-Morgan (2008) used alternative interpola-
tion techniques to estimate population density for an
analysis of asthma prevalence and showed that simpler
areal interpolation estimators underestimated the
negative effects compared to a more realistic, cadastral-
based dasymetric model. These studies have indicated
that the interpolation uncertainty is directly linked to
the problem of identifying homogeneity in the popu-
lation surface. Dasymetric models are successful if the
ancillary data help to identify regions of homogeneous
population. Similarly, the smoothing interpolation
methods are successful if the population surface is
smoothly varying with nearby areas being relatively
homogeneous.

Although these studies have provided a rich qual-
itative description of the sources of uncertainty, they
have not provided a means to quantitatively assess the
interpolation uncertainty within a specific study. The
P–MEDM allows for the quantification of uncertainty in
dasymetric estimates. Importantly, this method quanti-
fies not only the uncertainty that is inherent to the
downscaling problem but also the uncertainty that
arises from using inexact ancillary data. Although many

studies have conducted validation experiments to com-
pare the relative accuracy of different methodologies
ex post facto, few methodologies allow the quantifica-
tion of uncertainty as a direct model output. Notable
exceptions are the geostatistical models, which do al-
low direct estimation of uncertainty (Kyriakidis 2004;
Wu and Murray 2005; Liu, Kyriakidis, and Goodchild
2008). These methods use the spatial autocorrelation
of the population surface to quantify the uncertainty of
downscaling; they do not, however, quantify the uncer-
tainty that arises through using ancillary data of varying
quality, nor do they provide an automatic means for
balancing between these data of varying qualities. The
P–MEDM has these capabilities.

Methods

Dasymetric modeling includes a suite of techniques
to more precisely depict the spatial distribution of pop-
ulation within the spatially aggregate regions (Slocum
et al. 2009, chap. 15). Ancillary spatial data are es-
sential to the dasymetric process. Dasymetric modelers
often categorize ancillary data into two types: limit-
ing and related ancillary variables. Limiting variables set
constraints on the allowable population values, for ex-
ample, by limiting population densities to zero in areas
covered by water. Related ancillary variables can ac-
commodate more complex relationships. For example,
road density, elevation, or land cover might be used to
amplify or constrain population densities. Objectively
identifying these relations is a recurring problem, how-
ever. Although there is no firmly established method
for quantifying this relationship, linear regression tech-
niques are common (Mennis 2009).

Intelligent Dasymetric Mapping

One of the most widely used and most flexible tech-
niques for dasymetric modeling is intelligent dasymetric
mapping (Flowerdew, Green, and Kehris 1991; Mennis
and Hultgren 2006). This technique downscales from
source populations Pops to target populations P̂opt as
follows:

P̂opt = Pops
wt∑
t∈s wt

(1)

where wt is the expected population count in target
region t. This expected population count wt is derived
through regression analysis using the population and
ancillary layers; hence, Reibel and Agrawal (2007)
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84 Nagle et al.

called this approach regression weighted dasymetric
modeling.

One practical benefit of this method is that the target
populations are consistent with the source populations.
Adding up the dasymetric estimates recovers the
source populations; that is,

∑
t∈s P̂opt = Pops . This

constraint is frequently called the pycnophylactic, or
volume-preserving, constraint (Tobler 1979).

Regression-weighted dasymetric modeling does not
account for uncertainty in knowing the inputs or their
relationships. Often, the source population Pops is not
precisely known. For example, the source population
might come from a sample survey rather than a com-
plete enumeration or might represent the population
at a different point in time. Thus, it might be more
appropriate to write the source populations as P̂ops in
recognition of the fact that these data are actually esti-
mates of populations whose sizes are unknown.

An implicit logic of Equation 1 is that the target
estimates P̂opt are the result of rebalancing the target
estimates wt to be consistent with the source data.1 We
question, however, the logic of these constraints when
the data are uncertain and noisy. Why should we ex-
actly constrain our dasymetric results to inexact data?
If these populations are derived through regression be-
tween the population data layers and the ancillary data
layers (Mennis and Hultgren 2006; Reibel and Agrawal
2007), then these estimates contain uncertainty. De-
pending on the nature and quality of the data and on
the strength of the regression relationship, the uncer-
tainty in these regression estimates might be quite large.
Dasymetric modeling techniques do not currently ad-
dress these uncertainties. Even more alarming, dasy-
metric models commonly produce a single estimate for
the target population, implying that there is no uncer-
tainty. There is no explicit recognition that estimation
is uncertain, that estimation error is expected, or of how
large that estimation error might be. What is needed is
a technique that can account for uncertainty, possi-
bly balancing between the uncertainties in the source
populations P̂ops and the uncertainties in the target es-
timates wt , to produce population estimates with quan-
tifiable uncertainty. The P–MEDM model introduced
here provides exactly these capabilities.

The Maximum Entropy Approach
to Dasymetric Modeling

We advance the ME framework as an effective tool
for dasymetric modeling in the presence of uncertainty.

Table 1. A simplified scenario involving tract-level
summary data and region-wide joint distributions

Tract 1 Tract 2 Region total

Own Rent Total Own Rent Total Own Rent Total

Black ? ? 5 ? ? 10 10 5 15
White ? ? 35 ? ? 25 10 50 60
Total 10 30 40 10 25 35 20 55 75

Note: Missing cell values are denoted by a question mark. Maximum entropy
can estimate these missing values.

Although ME has a long history in geography for
location-allocation modeling (Wilson 1971), it is not
widely used for areal interpolation (however, Mrozinski
and Cromley [1999] is a noteworthy exception). The
ME framework has been successfully employed, how-
ever, in the closely related problem of small area esti-
mation, with applications varying from modeling the
distribution of votes across subpopulations within elec-
toral districts (Johnston and Pattie 1993) to estimating
the distribution of subpopulations across census zones
(Birkin and Clarke 1988; Wong 1992; Simpson and
Tranmer 2005). Leyk, Buttenfield, and Nagle (2013)
studied the ME problem for small area estimation and
assessed the degree of ambiguity in these subpopulation
distributions. These applications face problems that are
essentially areal interpolation problems, although they
are not framed as such. A similar approach, devel-
oped independently, is the Bayesian maximum entropy
framework (Christakos 2000; Bogaert 2002).

To introduce ME modeling we present a stylized
problem in the manner of Birkin and Clarke (1988).
Table 1 presents a data situation in which there
are two census tracts, with the goal to obtain the
distribution of specific subpopulations—as determined
by race and ownership—within these two tracts. There
might be published data for the univariate distribution
of race and univariate distribution of ownership by
census tract, but the joint cross-tabulation of these
attributes might not be published to protect anonymity
of respondents. Thus, the modeling goal is to estimate
these joint distributions.

Let wrck be the population in a given row (r), column
(c), and tract (k). The ME method estimates these miss-
ing values wrck through solving the following problem:

max
∑

rck

wrck

drck
log

(
wrck

drck

)
(2)
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Dasymetric Modeling and Uncertainty 85

subject to the pycnophylactic constraints∑
r

wrck = row sum, for each tract k,

∑
c

wrck = column sum, for each tract k,

and where drck are prior estimates. The prior estimates
can be a constant value if no other information exists,
or they can reflect prior, ancillary information about the
joint distribution across attributes, location, or both. For
example, if the joint distribution of ownership and race
is known for the overall population, then this overall
distribution might be used as a prior estimate for each
tract. This situation is displayed in Table 1. This situa-
tion was faced by Birkin and Clarke (1988) and Wong
(1992), who obtained these global estimates from pub-
lic use microdata. We adopt a similar strategy for inte-
grating public use microdata into dasymetric modeling.
Public use microdata are widely used across the social
sciences but are rarely encountered in geographic re-
search. Thus, the potential impacts of this research are
to provide techniques to “spatialize” household- and
individual-level microdata and to provide new opportu-
nities for interaction between geography and the other
social sciences.

Penalized Maximum Entropy Dasymetric Modeling

A significant shortcoming of both the ME and
regression-weighted dasymetric modeling approaches is
the failure to account for uncertainties. If the pop-
ulation data are uncertain, then the pycnophylactic
constraints are too stringent. Models should not force
population estimates to exactly add back up to other
estimates that are inherently imprecise. By relaxing the
pycnophylactic constraints, we incorporate uncertainty
into the ME dasymetric approach.

Following Birkin and Clarke (1988) and Wong
(1992), we begin with individual-level microdata, but
we then place these data within the dasymetric model-
ing framework and allocate these individuals to target
regions according to small area census data as well as
other ancillary spatial data layers. In survey sample data,
each sampled individual represents a group of unsam-
pled individuals in the population with the same char-
acteristics. Let the target population wit be the number
of individuals like sample record i in target region t. Let
P̂opk be an uncertain estimate of a population group
k, and let Popk be the true but unknown population
count. The index k is general; it could represent the

total population in a tract, or in a target region, or a
specific subpopulation, such as a tract-level count of
children in poverty, or even housing unit counts (not
population counts) such as the count of single-family
housing units in a block group.

The ideal pycnophylactic constraints would be∑
it∈k wit = Popk . These constraints are not feasible,

however, because we do not know the true values Popk .
Thus, we must explicitly account for the unknown
error between the true and estimated populations.
We instead use the constraints:

∑
it∈k wit = P̂opk + ek ,

where ek is the positive or negative error between the
estimated and the true population count. These errors
must be estimated in addition to the target populations
wit. Population estimates can come from a variety of
sources. Census estimates for various attributes and
spatial resolutions can be used as one type of constraint.
Other constraints might come from estimates produced
by the researcher. For example, regression-weighted
dasymetric modeling requires the researcher to estimate
a regression between population layers and ancillary
land cover layers. Predictions from this regression could
be another source of population estimates. This freedom
to include many different sources of data into dasymet-
ric modeling is a significant advancement. Any and all
data layers that can be used to predict a population at-
tribute become feasible inputs to dasymetric modeling.

These errors and constraints can be added to the ME
model as follows: Choose wit and ek to

max −
∑

it

n
N

wit

dit
log

(
wit

dit

)
−

∑
k

e2
k

2σ 2
k

(3)

subject to the relaxed pycnophylactic constraints

∑
it∈k

wit = P̂opk + ek for each constraint k.

where n is the size of the microdata sample, N is the pop-
ulation size, σ 2

k is the variance of the uncertainty ek , and
dit is a prior estimate of the population wit. The term∑

k
e2

k

2σ 2
k

is a penalty factor; it penalizes solutions with

large errors ek . If a P–MEDM solution exactly repro-
duces a population constraint (i.e.,

∑
it∈k wit = P̂opk),

then the error ek will be zero, and there will be no
penalty. If the solution does not exactly reproduce
a population constraint (i.e.,

∑
it∈k wit �= P̂opk), how-

ever, then there is an estimated error ek , and the solu-
tion will be penalized for this discrepancy between the
dasymetric estimates and the corresponding (ancillary)
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population estimates. This penalized ME framework,
although new to geography, has received considerable
treatment in the machine learning literature; see, for ex-
ample, Chen and Rosenfeld (2000) and Dudik, Phillips,
and Schapire (2007).

The effect of the penalty term is to favor solutions
with small errors ek , and preferably with zero errors.
Thus, the P–MEDM will tend to be close to the ancil-
lary population estimates P̂opk . But not all population
data are of equal quality, however. Some estimates are
more reliable than others. The variance terms σ 2

k in
Equation 3 account for the variation in data quality
among the input data layers. If the variance σ 2 of a
population estimate is relatively small then the penalty
on errors ek will be great. Thus, the P–MEDM solution
will tend to have high fidelity to those input data that
have a low variance. In contrast, if input data have a
high variance, then the penalty effect will be small.
Large errors ek will be permissible for these imprecise
population constraints. In the extreme case where the
constraints are completely imprecise, the penalty effect
will be zero; it will be as if the constraint does not ex-
ist. At the other extreme, when all of the uncertainties
are zero, then the P–MEDM solution is identical to the
ME solution. A similar use of the model variance σ 2

as a qualitative measure for assessing the ancillary data
was suggested by Mennis and Hultgren (2006); here, we
have formalized and quantified this process.

The adaptive property is convenient because it al-
lows many different types of ancillary data to be in-
cluded. Data that are reliable will have a strong impact
on the solution. Data that are not reliable will have a
slight impact on the solution. If the solution can ac-
commodate unreliable data without compromising the
fit of reliable data, then it will do so. If, however, the
P–MEDM cannot fit unreliable data without also com-
promising the fit of reliable data, then the reliable data
take precedence.

The variance σ 2
k must be known a priori; however,

this is not usually a problem because the variance of
population estimates is often available. For instance, if
census tract- or block-group-level summary tables are
used as constraints, then the variance σ 2

k is directly ob-
tained from the margins of error that the Census Bureau
publishes along with each estimate. Alternatively, if a
population constraint is obtained by regression, such as
a regression between population data and land cover
data, then a prediction error variance σ 2

k is provided by
the regression model. In contrast to regression-weighted
dasymetric modeling, which ignores the fact that regres-
sion predictions are imprecise, or that the population

data are themselves imprecise, P–MEDM is able to in-
corporate these uncertainties and to even adapt to vari-
ations in quality among the various input data layers.

A Statistical Motivation

In this section, we briefly describe a statistical moti-
vation for the P–MEDM model and describe techniques
for estimating the uncertainty in the final dasymetric
map product. The P–MEDM Equation 3 has two parts,
each of which is part of a specific, well-known log-
likelihood model. The first part,

∑
it

n
N

wit
dit

log(wit
dit

), is
proportional to the log-likelihood equation of a multi-
nomial model for the weights wit (Jaynes 2003). The
second term in the P–MEDM—the sum of square er-
ror terms e2

k

2σ 2
k
—is proportional to the log-likelihood of

a Gaussian distribution. Together, these two terms rep-
resent the joint likelihood of the weights wit and the
errors ek.

Taken together, we see that the P–MEDM equation
is equivalent to simultaneously maximizing the like-
lihood of sample weights (which have a multinomial
distribution) as well as the likelihood of the error dis-
tribution of ancillary population estimates (which are
assumed to have a Gaussian distribution).

Because the P–MEDM problem is also a maximum
likelihood problem, there are many possible ways to
specify confidence intervals for the output dasymetric
map. One way, based on the likelihood ratio, is concep-
tually simple but computationally expensive. For the
likelihood ratio method, one evaluates the P–MEDM
model multiple times, once with the optimal wit and er-
rors ek and then repeatedly with alternative, suboptimal
values. Call the optimal log-likelihood value L0 and the
suboptimal value L1. The likelihood ratio is the ratio
L1/L0. This ratio will have a chi-square distribution
(O’Brien 1992). For 95 percent confidence intervals of
the weights, one can try different suboptimal weights
wit, repeatedly recalculating the likelihood ratio and
searching for the weights that yield a likelihood ratio
equal to the 2.5 percent and 97.5 percent values of a chi-
square distribution; this is a computationally expensive
process.

Another, simpler method relies on approximating
the confidence intervals by a Gaussian distribution. For
this method, we rely on the large sample approximation
that the second derivatives of a likelihood function are
inversely proportional to the covariance matrix of the
model parameters (Schabenberger and Gotway 2004).
With the covariance matrix in hand, one can then

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

en
ne

ss
ee

, K
no

xv
ill

e]
 a

t 0
7:

06
 0

2 
M

ay
 2

01
4 



Dasymetric Modeling and Uncertainty 87

obtain the standard errors of the parameters, and the ap-
proximate 95 percent confidence intervals are obtained
by the usual method of calculating ± 2 standard er-
rors. Many computational optimization procedures au-
tomatically calculate the second derivatives. Thus, this
method is cheap to calculate; the P–MEDM only needs
to be solved once and the final information about the
second derivatives at the solution is immediately used
to calculate the covariance matrix.

Case Study

Data

We demonstrate the P–MEDM model with a
case study that models the population in Davidson
County, Tennessee, at various spatial and demographic
resolutions. Davidson County contains the city of
Nashville and had a population of about 600,000
persons in 2010. To demonstrate the wide applicability
of the P–MEDM model, we incorporate three different
sources of data representing four different levels of
spatial resolution (Figure 2).

Figure 2. Davidson County illustrated using data at different spatial
scales. Davidson county has five public use microdata areas (thick
black line), 144 census tracts (thin black lines), and 467 block
groups (gray lines). The base layer is a hill-shaded representation
of the 2006 National Land Cover Database, residential classes in
red shades, and vegetated classes in green. (Color figure available
online.)

The first source of data are household-level micro-
data from the 5 percent PUMS of the 2005–2009 ACS.
These microdata describe detailed characteristics of a
5 percent sample of individual households. The spatial
resolution of the PUMS, however, is very coarse. The
geography of the PUMS is a geographic unit called the
PUMA. PUMAs are large to preserve the anonymity
of respondents; each PUMA contains at least 100,000
persons, and there are only five PUMAs in Davidson
County. Although these data are not widely used in
geography, they are widely used in other social sci-
ences. It is important that geographers develop tools
that enable them to engage with the methods and
findings being produced in the other social sciences;
the P–MEDM enables the use of these data in spatial
contexts.

The second source for data are summary tables
from the 2005–2009 ACS representing two different
geographic scales: census tracts (which are nested
within PUMAs) and block groups (which are nested
within tracts). These ACS summaries are survey esti-
mates from a 10 to 12 percent survey of the population
and are not actual population counts. For each ACS
estimate, the Census Bureau also publishes a 90 percent
margin of error (MOE), which is used to compute an
error variance σ 2

k (U.S. Census Bureau 2009). The
MOE can be quite large for small population estimates,
such as for some block groups and some small subpop-
ulations. In extreme cases, the coefficient of variation
for an ACS estimate might exceed 100 percent. Such
low precision makes the use of these data dubious in a
traditional dasymetric model. The P–MEDM, however,
naturally adapts to these differences in quality; these
estimates can be added to the model with very little
effect on the model. This reduces the burden on
the researcher to subjectively evaluate which data are
“good enough to use” and which are not.

The final source of data used in this case study
is the 2006 NLCD. The NLCD is a raster grid with
a spatial resolution of 30 m covering the entire
United States, with each cell preclassified into a single
land cover type. Dasymetric models commonly use
land cover data (Eicher and Brewer 2001; Mennis
and Hultgren 2006; Reibel and Agrawal 2007; Tapp
2010). Despite their prevalence in dasymetric studies,
land cover is not actually a direct estimate of any
population attribute. In all such dasymetric studies, a
relation between the land cover layer and population
layer must be identified. We adapt the regression-
weighted areal interpolation approach (Reibel and
Agrawal 2007; Mennis and Hultgren 2006) to derive

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

en
ne

ss
ee

, K
no

xv
ill

e]
 a

t 0
7:

06
 0

2 
M

ay
 2

01
4 



88 Nagle et al.

ancillary population estimates P̂op and error variances
σ 2 for each 30-m pixel from the ancillary data.

Data Processing and Target Zone Construction

For this analysis, each land cover pixel was reclas-
sified into six classes: five classes that are potential
residential areas (these are used as related ancillary
variables) and one nonresidential class (this is used as a
limiting ancillary variable). The five land cover classes
used as related ancillary variables are high-, medium-,
and low-intensity and open space, developed land
(NLCD classes 24, 23, 22, and 21), and vegetated land
(all pixels not classified as water, barren, or wetland).
The underlying NLCD definitions for these classes
indicate that residential land use is possible (Fry et al.
2011). Water, barren land, and wetland are grouped
into a single nonresidential class because the given class
definitions indicate that residential land use is highly
unlikely (we ignore the possibility, for example, of resi-
dential houseboats). We then merged the NLCD pixels
within census block groups to construct target regions.
Thus, target regions for this analysis are subblock group
regions with homogeneous NLCD classification; there
are at most six target regions within each block group.

To construct population constraints, the ACS data
are processed by selecting a subset of the summary ta-
bles and then further collapsing some categories. The
census tract and block group data tables that are used
as ancillary estimates are

� Total population and number of housing units.
� Number of housing units by building type (six

categories: single-family detached, single-family at-
tached, a building with two to nine units, one with
ten to forty-nine units, one with fifty units or more,
and housing units not elsewhere classified).

� Number of households by tenure status (two cate-
gories: own or rent).

� Number of households by household income (in
three categories: ≤$25,000, $25,001–50,000, and
≥$50,001).

� Number of households by race of householder (two
categories: black, all other).

� Number of households by income and race (for a
total of six categories).

� Number of households by income and tenure (six
categories).

� Number of households by race and tenure (four cat-
egories).

Table 2. Listing of calibration constraints by geographic
detail and data source

Block NLCD
Constraint Tract group region Source

Total population X X ACS
Housing units X X ACS
Income X X ACS
Tenure X X ACS
Race X X ACS
Tenure × Race X X ACS
Income × Tenure X ACS
Income × Race X ACS
Building type X X ACS
Building type X Regression

(ACS and NLCD)

Note: NLCD = National Land Cover Database; ACS = American Com-
munity Survey.

These data constraints and their geographic scale are
summarized in Table 2.

The Census Bureau publishes each of these tables
at both the block group and tract level, except for the
households by income and tenure and the households
by income and race tables, which are only published
down to the tract level. Although it might seem that
the constraints at both the tract and the block group
levels are redundant, this is not the case. Even though
the tract-level estimates are equal to the sum of block
group estimates, the MOEs can be very different. The
MOE of the sum of block group estimates is at least
as large as the MOE of the tract-level estimate. Thus,
including the tract-level estimates in addition to those
for the block groups allows the P–MEDM to maintain
more fidelity to the tract-level estimates.

The tract and block group summaries are already
in the proper form that allows us to use them
as pycnophylactic constraints with error; that is,

Popk = ̂PopACS
k + ek . The related NLCD land cover

data are not immediately usable as population con-
straints, however; we must convert the land cover data
into constraining population estimates. Following the
regression-weighted dasymetric modeling approach,
we use regression techniques to specify a relationship
between the land cover and population layers and then
calculate the associated standard errors of prediction.

Many dasymetric studies have specified a linear re-
gression relation between land cover and population
density. Logically, however, land cover is less related
to population density than it is to building type and
building density. Although this type of relation was
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Dasymetric Modeling and Uncertainty 89

difficult to specify and use in previous dasymetric stud-
ies, it can be easily used in the P–MEDM approach. We
use a Poisson generalized linear model to relate hous-
ing unit counts to land cover type. Let HU(k)

cb denote
the number of housing units of building type k in block
group b and land cover c. We assume that this quantity
has a Poisson distribution. We then specify the follow-
ing link between expected number of housing units and
the land cover:

E
(
HU (k)

b

) =
∑

c

Areacbβ
(k)
c (4)

where E(HU(k)
b ) is the expected number of housing

units, Areacb is the land area of block group b with land
cover c, and β(k)

c is the regression coefficient measur-
ing the housing unit density for building type k in land
cover class c. This characterizes a Poisson generalized
linear model with additive link function (McCullagh
and Nelder 1989). We have also added overdispersion
(extra variance) to the model specification. Overdisper-
sion might arise from either uncertainty in measuring
the dependent variable, which is certainty present for
these data measured by the ACS, from model misspec-
ification, or from measurement error in the land cover
classification, which is certainly present as well.

Once this regression is fitted for each building type
k, we construct estimates ĤU

(k)
for each target region.

Thus, the regression produces a geographic data layer
containing housing unit predictions for each building
type and target region. In addition to producing a regres-
sion prediction, the regression also produces a predic-
tion variance; this is the σ 2 that is needed for P–MEDM.
Thus, we use regression to construct housing unit esti-
mates for each target region, which are then added to
the P–MEDM constraints, along with the constrain-
ing tract and block group estimates that are provided
directly by the Census Bureau.

An important note to make is that, although we
have explicitly quantified the prediction accuracy of
the land cover data, we have not explicitly quantified
the classification error of the NLCD. The NLCD is
itself a complex data set, and there is an extensive liter-
ature on uncertainty and error in NLCD classifications
(Wickham et al. 2010; Wickham et al. 2013). This
classification error is especially problematic in rural ar-
eas, where isolated housing units are often misclassified
as vegetated. This type of error is not explicitly incor-
porated in the P–MEDM. It is implicitly incorporated,
however, as the misclassification error will reduce the

prediction accuracy of the land cover data and thus
increase the prediction variance σ 2 of these P–MEDM
constraints. More accurate land cover data would
presumably lead to higher prediction accuracies. This
misclassification problem is a common impediment to
dasymetric modeling, is subject to intensive research
in the land cover and remote sensing community, and
can only be solved by improved detection procedures.

Results

In this section, we present a variety of different
products and analyses that are made possible by the
P–MEDM technique. Once weights wit are obtained,
they can be utilized in a variety of different ways.

Dasymetric Mapping

First, it is possible to duplicate traditional dasymetric
modeling. The sum

∑
i wit will produce population

estimates for each target region. Because we have the
microdata, with all of their individual- and household-
level attributes, it is possible to obtain dasymetric
maps for various subpopulations as well. Let k be any
subpopulation of interest, then

∑
i ∈k wit represents the

subpopulation estimate for target region t. Figure 3 dis-
plays both a dasymetric map for total population, as well
as low-income black households, in Davidson County.

The P–MEDM makes it possible, with one optimiza-
tion, to produce many different types of dasymetric
estimates at the target zone scale. This contrasts with
existing practice, in which the dasymetric model must
be independently fitted for each estimate. Eicher and
Brewer (2001), for example fit dasymetric models
separately for total population, Hispanic persons,
and number of children. The P–MEDM approach
can provide these different estimates simultaneously.
Furthermore, the P–MEDM estimates are internally
consistent in the sense that dasymetric estimates for
subpopulations will add up to the dasymetric estimates
for larger populations.

Small Area Estimation

The P–MEDM also allows the creation of new small
area estimates for use in mapping and analysis. Consider,
for example, an analysis of racial disparities in rates
of homeownership across neighborhoods. Ideally, such
an analysis would control for the confounding effects
of income. To do this, we need neighborhood-level
estimates of the trivariate table containing tenure (own
vs. rent), race, and income. This trivariate table is not
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90 Nagle et al.

Figure 3. Dasymetric maps for total population (left) and for persons living in a home with a black householder and household income
less than $25,001 (right). These dasymetric estimates were produced using the exact same model as described in the text. Other population
characteristics can be similarly modeled and mapped. (Color figure available online.)

produced by the Census Bureau. The Census Bureau
produces each of the bivariate tables for census tracts
but not the trivariate table. Researchers might use the
PUMS to construct the trivariate table for each PUMA,
but PUMAs are so large that they are inadequate proxies
to assess any neighborhood effects.

This type of estimate is possible with the P–MEDM
approach. Using the estimated weights wit, we can con-
struct the necessary trivariate tables for each tract (or
block group, or target region) and then directly calcu-
late the homeownership rate for each region. Figure 4
displays maps of the estimated homeownership rates for
each tract, separated by race of the householder and
household income. These maps are not possible from
the ACS summary tables. Similarly, if the PUMS were
used to estimate these homeownership rates, these rates
would have to be constant across all tracts within the
same PUMA. The P–MEDM clearly shows that there
is likely spatial variation in these homeownership rates
across the county. In this way, the P–MEDM technique
allows richer mapping and analytical capabilities than
currently exist.

Uncertainty Analysis

Finally, we demonstrate the ability of the P–MEDM
to produce estimates of uncertainty for the output maps
and estimates. For the homeownership analysis in the
previous section, we might consider the odds ratio

of homeownership between black and white house-
holds, for households with incomes between $25,001
and $50,000. Using the estimated data that went into
Figure 4, we could produce the single best estimate of
the odds ratio for each tract. But for scientifically robust
analysis, it is necessary to evaluate the uncertainty of
these estimates as well.

This is possible with the P–MEDM approach. Using
the second derivatives of the likelihood equation and
the covariance function, we have simulated 100 differ-
ent sets of weights wsim

it . For each simulation, we ag-
gregate the weights and calculate the odds ratio. These
simulations give us a Monte Carlo estimate of the sta-
tistical uncertainty (see, e.g., Wood 2006, 246–47, for
discussion of this technique in the context of penalized
generalized linear models).

Figure 5 displays box plots of the simulated odds ra-
tio for each census tract. Each of these estimates is in
some sense consistent with the input data, subject to
the inherent uncertainties in both input data, as well
as in the maximum entropy/maximum likelihood esti-
mating procedure. Each column in Figure 5 represents
a different census tract, with the tracts sorted from that
tract with the highest proportion of white households
on the left to that tract with the highest proportion of
black households on the right. For households earning
$25,001 to $50,000, we see clearly that black house-
holds are more likely to own a home in predominantly
black neighborhoods than are white households, and
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Dasymetric Modeling and Uncertainty 91

Figure 4. Maps of tract-level home-
ownership rates, separated by race of
householder (varying across columns)
and household income (varying across
rows). These estimates are not pub-
lished by the Census Bureau and have
been estimated according to the pe-
nalized maximum entropy dasymetric
model as described in the text. (Color
figure available online.)

that this is the opposite in predominantly white neigh-
borhoods. Also, in a majority of tracts, black households
are less likely to own a home than are white households
(more tracts have an odds ratio less than 1.0 than an
odds ratio above 1.0). Even considering the error bars,
this trend is evident and robust.

It is important to emphasize that not all tracts are
reliably estimated. The error bars can be quite large.
Taken individually, many of the tract-level estimates
might have been deemed unreliable or unusable. A
choropleth plot, for instance, might not have robust
class breaks. This uncertainty analysis, however, allows
researchers to make this determination on their own.
This is not possible with current dasymetric techniques.
Despite the high uncertainty of individual estimates, we
can still see from Figure 5 that robust scientific gener-
alizations are possible. Even with many census tracts

imprecisely estimated, there is a clearly identified re-
lationship between the odds ratio of homeownership
and the racial composition of a census tract. This type
of uncertainty information is important because it al-
lows researchers to objectively evaluate the quality of
dasymetric estimates. This evaluation of quality will
vary by researcher and by data use. With the P–MEDM
estimate, researchers are provided with sufficient infor-
mation to undertake such an evaluation, even if they
know very little about dasymetric or small area estima-
tion techniques.

Discussion

This article has introduced a new methodology for
dasymetric modeling. This model is able to account for
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92 Nagle et al.

Figure 5. Boxplots of simulated odds
ratios for each census tract. The odds
ratios are those of homeownership
for black households relative to white
households, each with household in-
comes between $25,001 and $50,000.
Odds ratios below 1.0 indicate that
black households are less likely to own
their home than are white households.

information about the quality of ancillary data with re-
gard to downscaling population estimates. Previous lit-
erature has focused on spatial accuracy, noting that finer
resolution population data are preferred to coarse reso-
lution data. The results here suggest a cautionary note
that does not exist in the previous literature; data with
finer spatial resolution are often less accurate. For ex-
ample, block groups are less accurate than tracts. Thus,
although we expected the tract-level data to be redun-
dant given the block group data, this was not the case;
the tract-level data were more precise than the sum of
the block group data. Similarly, data with even higher
resolution, such as land cover, have even less accurate
information about population. Future developments in
dasymetric modeling should consider more fully the
multidimensional nature of trade-offs between differ-
ent data sources and more fully acknowledge trade-offs
between spatial resolution and data accuracy.

The P–MEDM model does have some potential lim-
itations. First and foremost, the model requires an esti-
mate of variance for each ancillary variable. This might
not be as challenging as it first seems, however. For ex-
ample, census data in the United States are published
with estimates of the MOE. Second, ancillary data are
important only insofar as they are able to predict popu-
lation well. For example, the quality of the land cover
class is only indirectly important; what is directly rel-
evant is how well the available land cover data can
predict the population surface. This can be determined
by regression techniques, regardless of the quality of the

land cover data. More precise land cover data will have
higher predictive power, but it is the predictive power
that is the directly relevant measure of data quality, not
the quality of the land cover classification. Whatever
this predictive fit between the ancillary data and the
population distribution is, the P–MEDM will properly
find the balance between the different ancillary data in-
puts. It is possible that there are situations in which it is
still difficult to quantify the uncertainty of a particular
ancillary data layer, but we believe that the framework
described here is general enough to incorporate many
different types of data.

A second limitation of the P–MEDM is that it does
not incorporate spatial autocorrelation of population
data as an ancillary component such as in smooth-
ing techniques that are motivated by the concept of
areal interpolation. Integrating smoothing and the de-
scribed P–MEDM is difficult because traditional statisti-
cal smoothing methods rely on a Gaussian assumption,
which is incompatible with the log-linear assumption
used here. The log-linear assumption is convenient be-
cause it is guaranteed to produce nonnegative popu-
lation estimates. This is not true, for example, with
common geostatistical techniques, where ad hoc fixes
are sometimes needed to enforce nonnegativity (Yoo
and Kyriakidis 2006). Additionally, geostatistical mod-
els are tailored to specific subpopulations; there is no
guarantee, for instance, that the spatial structure of low-
income black households is the same as the spatial struc-
ture of other household types. The P–MEDM approach
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Dasymetric Modeling and Uncertainty 93

is attractive because it can model all subpopulations
found in the microdata simultaneously. Nonetheless,
explicit incorporation of spatial autocorrelation should
enhance the predictive ability of the P–MEDM, and
further research will investigate this possibility.

Another limitation is that we have not used explic-
itly spatial regression models in the modeling of an-
cillary data. We have assumed that the errors in the
constraint equations are uncorrelated. This, however,
is a limitation of our implementation and not of the
P–MEDM. One way to incorporate spatial autocorre-
lation among the constraints would be to change the
penalties to include the entire inverse covariance ma-
trix of the constraints. In essence, rather than assuming
that the penalties derive from an approximating Gaus-
sian distribution, this would instead treat the errors as
if derived from a multivariate Gaussian distribution. At
an intuitive level, this modification would decluster,
or decorrelate, the constraints, giving more weight to
the constraints that are precise or that are relatively
uncorrelated with other constraints. For ancillary data
that are included through a regression relationship, as
the land cover data are here, it would be possible to
use a linear or nonlinear spatial regression model, and
account for spatial autocorrelation explicitly. Incorpo-
rating the spatial autocorrelation of small area census
data will be more difficult, however, as the spatial struc-
ture of survey sampling errors is relatively understudied.
These are subjects for further research.

Summary

We have developed a new conceptual framework
for dasymetric modeling called the penalized maximum
entropy dasymetric model (P–MEDM). This P–MEDM
addresses four problems that have challenged recent
dasymetric modeling approaches:

1. Accounting for uncertainty in the dasymetric
output.

2. Accounting for uncertainty in the relation-
ship between ancillary variables and the target
variables.

3. Accounting for uncertainty in the population data
themselves.

4. Simultaneously producing estimates for multiple
subpopulations.

The P–MEDM technique is able to integrate data
with disparate levels of spatial and demographic resolu-

tion to construct richer and more complete population
models at finer spatial scales. The penalizing mecha-
nism allows the P–MEDM to adjust automatically to
various input data having different levels of precision.
This property will allow future dasymetric modeling ef-
forts to consider multiple ancillary data sources, regard-
less of their quality. This reduces the need for modelers
to subjectively evaluate which ancillary data are “good
enough” and which are not. The P–MEDM is also able
to quantify the uncertainty of the final product, which
has been largely ignored to date. This is an important
factor in making dasymetric techniques accessible to
other social scientists and supporting new applications
in other disciplines. The quantification of statistical un-
certainty will make it possible for potential users to ob-
jectively evaluate the output of the dasymetric model,
even if they do not fully understand the dasymetric
model itself. Researchers regularly use data for which
they do not fully understand the estimation procedure,
but for them to evaluate their analysis it is crucial that
they are given sufficient information to determine the
quality of these data.

As demonstrated in the case study with the
P–MEDM approach, it is possible to produce new
dasymetric data or modeling tools that are usable
by the general social science research community.
Survey weighting, as used in this research, makes it
possible for users to effectively analyze a wide variety of
attributes. This article proposes dasymetric modeling
as one effective strategy to producing general-purpose
spatial microdata, acceptable for use in a wide variety
of research applications.

All computations in this article were produced in
the R statistical computing environment, and programs
and data are available from the corresponding author
on request.
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Note
1. Equation 1 is often presented in an alternative, but equiv-

alent form: P̂opt = wt + wt∑
t∈s wt

(Pops − ∑
t∈s wt ). In this

form, the target estimates are seen as the result of allocat-
ing the source errors back to the target estimates wt .
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