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Abstract

Dasymetric models increase the spatial resolution of population data by
incorporating related ancillary data layers. The role of uncertainty in dasymetric
modeling has not been fully addressed as of yet. Uncertainty is usually present
because most population data are themselves uncertain, and/or the geographic
processes that connect population and the ancillary data layers are not precisely
known. A new dasymetric methodology - the Penalized Maximum Entropy
Dasymetric Model (P-MEDM) - is presented that enables these sources of
uncertainty to be represented and modeled. The P-MEDM propagates uncertainty
through the model and yields fine-resolution population estimates with associated
measures of uncertainty. This methodology contains a number of other benefits of
theoretical and practical interest. In dasymetric modeling, researchers often
struggle with identifying a relationship between population and ancillary data
layers. The PEDM model simplifies this step by unifying how ancillary data are
included. The P-MEDM also allows a rich array of data to be included, with disparate
spatial resolutions, attribute resolutions, and uncertainties. While the P-MEDM does

not necessarily produce more precise estimates than do existing approaches, it does
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help to unify how data enter the dasymetric model, it increases the types of data
that may be used, and it allows geographers to characterize the quality of their
dasymetric estimates. We present an application of the P-MEDM that includes
household-level survey data combined with higher spatial resolution data such as
from census tracts, block groups, and land cover classifications.

Key Words: dasymetric modeling, small area estimation, maximum entropy

Introduction

Researchers often desire population data at finer spatial resolutions than are
publicly available. Fine resolution population data have been produced using such
methods as areal interpolation, ordinary kriging, and dasymetric modeling.
Dasymetric modeling produces fine-resolution estimates by utilizing relations
between population distribution and ancillary geographic layers (Figure 1).
Examples of ancillary data commonly used include: land cover (Mennis 2003), road
density (Reibel and Bufalino 2005), slope (Schumacher et al. 2000), nighttime lights
(Briggs et al. 2007), Landsat Thematic Mapper data (Yuan, Smith, and Limp 1997),
LIDAR-derived building heights (Xie 2006; Kressler and Steinnocher 2008),
IKONOS-derived land use classification (Liu, Kyriakidis, and Goodchild 2008), parcel
data (Tapp 2010) and address points (Zandbergen 2011).

[Insert Figure 1 about here]

A common characteristic of these studies is the integration of: 1) population
data, 2) ancillary data layers, and 3) a model relating the two. Each of these model
inputs introduces its own uncertainty. For instance, population data may be the
result of a sample survey rather than a complete enumeration, or they may
represent the population distribution at a different point in time. Similarly, most
geospatial ancillary layers contain their own sources of error in location or in
attribution. Perhaps most important, however, are the uncertainties that arise from
trying to quantitatively link or relate the population distribution to the ancillary
layers. The link between the distribution of population and the distribution of other

spatial attributes is typically uncertain and is difficult to quantify and assess.
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Population distributions can never be completely characterized by deterministic
relations because they are sensitive to local contextual factors such as cultural
norms, local land use and housing regulations, local /regional environmental
constraints, and the vagaries of random chance and history.

Despite these many sources of uncertainty, dasymetric techniques primarily
treat this relational problem as a deterministic problem and do not adopt
quantitative mechanisms for incorporating uncertainty. We propose a new
methodology for dasymetric modeling that takes uncertainty into account, whether
arising through uncertain population data, uncertain ancillary data, or uncertain
relationships between population and ancillary data. Furthermore, this new
methodology tracks these uncertainties through the dasymetric model in order to
produce a measure of quality for the final population estimates.

This new model is based on an extension of Maximum Entropy (ME) techniques
and we call it the Penalized Maximum Entropy Dasymetric Model (P-MEDM). ME
techniques have been frequently used for "location-allocation" type problems in
geography, in which an initial population needs to be allocated among a variety of
different locations (Johnston and Pattie 1993). By themselves, ME techniques do not
address the effects of uncertain input data layers, but we show how these
uncertainties may be addressed by adding penalties to the ME. Furthermore, the P-
MEDM model is shown to naturally adapt to the varying qualities of input data,
allowing both high- and low-quality data to be utilized simultaneously.

The benefits of the P-MEDM include:

1. Itintegrates population and ancillary data sources with disparate levels of
spatial and attribute resolution,

2. Itincorporates information about the known uncertainty of the input
population and ancillary data,

3. Itincorporates information about uncertainty about the estimated relationship
between population and ancillary data layers, and

4. It produces output population estimates with quantifiable uncertainty
themselves, allowing other researchers to assess the quality of the final

dasymetric products with regard to their own intended uses.
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A simple case demonstrates the benefits of the P-MEDM. Since one of these
benefits is its seamless ability to incorporate data of varying resolutions and
qualities, this case study includes: household-level data from the Public Use
Microdata Sample (PUMS) of the American Community Survey (ACS), tract- and
block group-level summary data from the ACS, and land cover information from the
National Land Cover Database (NLCD). The PUMS have extraordinary demographic
resolution in that they contain records of individual households and the persons
within them. They have very coarse spatial resolution, however. The enumeration
districts for the PUMS (called Public Use Microdata Areas, or PUMAs) must contain
atleast 100,000 persons. While it is possible to identify in which PUMA a household
lives, it is not possible to identify the household’s location within the PUMA.

In contrast to the ACS microdata, the ACS census tract and block group data are
aggregates of many households. While these layers have finer spatial resolution
than the PUMS, they have coarser demographic resolution than the PUMS because
they do not contain description of individual households or persons. The ACS is a
rolling sample of the American population. On average, the ACS samples 135
household per census tract over a 5 year period, which are used to estimate the
characteristics of the tract. Tract- and block group-level data layers are available
for univariate population distributions, and some bivariate distributions, but they
do not contain the richness of individual- and household-level data afforded by
microdata. An additional problem when using ACS data for small areas is that these
data often have large Margin of Errors. Because of the relatively small sample size
of the ACS compared to the previous decennial census long form, tract and block
group level estimates may be quite uncertain. The P-MEDM is able to account for
this.

Finally, the case study includes relatively fine spatial resolution (30 meter) land
cover data from the NLCD. These data, however, have relatively crude demographic
characterization. Land cover data are valuable since they a proxy for demographic
characteristics through a chain of indirect links that tie together land cover, land
use, the type and density of housing, and the type and quantity of people residing in

those houses. Thus, while land cover data have fine spatial resolution, they have
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coarse demographic resolution. The P-MEDM model allows this type of proxy data
to enter and play their own unique role within the dasymetric model.

This application case study demonstrates new types of analyses that are
enabled by the P-MEDM. It also demonstrates how the uncertainty estimates
produced by P-MEDM can provide signals to analysts indicating the quality of a
dasymetric model and hence, to also indicate appropriate and inappropriate uses of

dasymetric modeling more generally.

Areal Interpolation and Uncertainty

Areal interpolation is the process of downscaling coarse scale geographic data
from source regions to a finer target scale (Goodchild and Lam 1980). Areal
interpolation and dasymetric modeling are similar in that both are methods for
downscaling spatial data. Areal interpolation differs from dasymetric modeling in
that it assumes the boundaries of the target regions are arbitrary and that the
variable being interpolated varies smoothly across the boundaries of the source and
target regions. This smoothness assumption is explicit in methods such as Tobler’s
smooth pycnophylactic interpolation (1979) and Kyriakidis’ area-to-area and area-
to-point ordinary kriging (2005). In contrast, dasymetric modeling assumes that
there are areas of relative homogeneity separated by sharp, discrete borders in the
population surface, and dasymetric modeling seeks to incorporate ancillary data
that are able to identify these boundaries. Uncertainty is reduced in dasymetric
models if the boundaries between target regions correspond to real boundaries in
the population surface. This assumption - whether the population surface is a
smooth or a discrete surface - influences the nature of interpolation and the
strategies chosen to address uncertainty (Goodchild and Lam 1980; Goodchild,
Anselin and Deichmann 1995).

Assumptions about the nature of boundaries affect the kinds of ancillary
information that are used for downscaling. The ancillary information in the

smoothing methods includes information about the spatial structure (spatial
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autocovariance) of the population surface; the ancillary information in dasymetric
methods includes information that identifies boundaries of homogeneous regions
the population surface. Stated differently, smoothing methods assume that the best
ancillary information is information about the spatial autocorrelation of the
population surface (i.e., the target variable itself), whereas dasymetric methods
assume that the best information is information about the correlation between
population and ancillary data at the same location. Both of these methods, however,
involve interpolating the population to an unknown target region, and thus
introduce uncertainty.

Many studies have been conducted to identify the sources of uncertainty in
areal interpolation methods. In general, uncertainty is found to increase with larger
source regions and smaller target regions (Sadahiro 2000). Ancillary data that can
effectively define homogeneous regions also reduce uncertainty. Zandbergen and
Ignizio (2010) compare different types of ancillary data and conclude that no one
source of ancillary data is superior in all instances, but they do suggest that land
cover data are relatively robust ancillary data for modeling population density.
Furthermore, the variations between these methods can have significant impacts for
subsequent spatial analysis. Maantay, Maroko and Hermann (2007) and Maantay,
Maroko and Porter-Morgan (2008) used alternative interpolation techniques to
estimate population density for an analysis of asthma prevalence, and showed that
simpler areal interpolation estimators underestimated the negative effects
compared to a more realistic, cadastral-based dasymetric model. These studies
have indicated that the interpolation uncertainty is directly linked to the problem of
identifying homogeneity in the population surface. Dasymetric models are
successful if the ancillary data help to identify regions of homogeneous population.
Similarly, the smoothing interpolation methods are successful if the population
surface is smoothly varying with near-by areas being relatively homogeneous.

While these studies have provided a rich qualitative description of the sources
of uncertainty, they have not provided a means to quantitatively assess the
interpolation uncertainty within a specific study. The P-MEDM allows for the

quantification of uncertainty in dasymetric estimates. Importantly, this method
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quantifies not only the uncertainty that is inherent to the downscaling problem, but
also the uncertainty that arises from using inexact ancillary data. While many
studies have conducted validation experiments to compare the relative accuracy of
different methodologies ex post facto, few methodologies allow the quantification of
uncertainty as a direct model output. Notable exceptions are the geostatistical
models, which do allow direct estimation of uncertainty (Kyriakidis 2005; Wu and
Murray 2005; Liu, Kyriakidis and Goodchild 2008). These methods use the spatial
autocorrelation of the population surface in order to quantify the uncertainty of
downscaling, they do no, however, quantify the uncertainty that arises through
using ancillary data of varying quality, nor do they provide an automatic means for
balancing between these data of varying qualities. The P-MEDM has these

capabilities.

METHODS

Dasymetric modeling includes a suite of techniques to more precisely depict the
spatial distribution of population within the spatially aggregate regions (Slocum et
al. 2009, chap. 15). Ancillary spatial data are essential to the dasymetric process.
Dasymetric modelers often categorize ancillary data into two types: limiting and
related ancillary variables. Limiting variables set constraints on the allowable
population values, for example, by limiting population densities to zero in areas
covered by water. Related ancillary variables can accommodate more complex
relationships. For example, road density, elevation, or land cover might be used to
amplify or constrain population densities. Objectively identifying these relations is a
recurring problem, however. While there is no firmly established method for

quantifying this relationship, linear regression techniques are common (Mennis

2009).

Intelligent Dasymetric Mapping

One of the most widely used and most flexible techniques for dasymetric

modeling is intelligent dasymetric mapping (Flowerdew, Green, and Kehris 1991;
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Mennis and Hultgren 2006). This technique downscales from source populations

Pop; to target populations Pop, as follows:
Wt

Pop, = POPSW
tes

(1)
where w; is the expected population count in target region t. This expected
population count w; is derived through regression analysis using the population
and ancillary layers; hence, Reibel and Agrawal (2007) call this approach regression
weighted dasymetric modeling.

One practical benefit of this method is that the target populations are consistent

with the source populations. Adding up the dasymetric estimates recovers the

source populations: i.e. 2 res Popy = PODs. This constraint is frequently called the
pycnophylactic, or volume-preserving, constraint (Tobler 1979).

Regression weighted dasymetric modeling does not account for uncertainty in
knowing the inputs or their relationships. Often, the source population Pop; is not
precisely known. For example, the source population may come from a sample
survey rather than a complete enumeration, or may represent the population at a
different point in time. Thus, it might be more appropriate to write the source
populations as Pop; in recognition of the fact that these data are actually estimates
of populations whose size is unknown.

An implicit logic of equation (1) is that the target estimates Pop, are the result
of rebalancing the target estimates w; in order to be consistent with the source
data.! We question, however, the logic of these constraints when the data are
uncertain and noisy. Why should we exactly constrain our dasymetric results to
inexact data? If these populations are derived through regression between the
population data layers and the ancillary data layers (Mennis and Hultgren 2006;
Reibel and Agrawal 2007), then these estimates contain uncertainty. Depending on

the nature and quality of the data and on the strength of the regression relationship,

L Equation (1) is often presented in an alternative, but equivalent form:
Pop, = w; + <*+—(Pop, — Wi
Pt 2lies Wt (Popy =2 tes ) In this form, the target estimates are seen
as the result of allocating the source errors back to the target estimates w;.

8
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the uncertainty in these regression estimates may be quite large. Dasymetric
modeling techniques do not currently address these uncertainties. Even more
alarming, dasymetric models commonly produce a single estimate for the target
population, implying that there is no uncertainty. There is no explicit recognition
that estimation is uncertain, that estimation error is expected, nor of how large that
estimation error might be. What is needed is a technique that can account for
uncertainty, possibly balancing between the uncertainties in the source populations
Pop, and the uncertainties in the target estimates w,, in order to produce
population estimates with quantifiable uncertainty. The P-MEDM model introduced

here provides exactly these capabilities.

The Maximum Entropy approach to dasymetric modeling

We advance the maximum entropy (ME) framework as an effective tool for
dasymetric modeling in presence of uncertainty. While ME has a long history in
geography for location-allocation modeling (Wilson 1971), it is not widely used for
areal interpolation (however, Mrozinski and Cromley 1999 is a noteworthy
exception). The ME framework has been successfully employed, however, in the
closely related problem of small area estimation, with applications varying from
modeling the distribution of votes across subpopulations within electoral districts
(Johnston and Pattie 1993) to estimating the distribution of subpopulations across
census zones (Birkin and Clarke 1988; Wong 1992; Simpson and Tranmer 2005).
Leyk et al studied the ME problem for small area estimation and assessed the degree
of ambiguity in these subpopulation distributions (2013). These applications face
problems that are essentially areal interpolation problems, although, they are not
framed as such. A similar approach, developed independently, is the Bayesian
Maximum Entropy Framework (Christakos 2000; Bogaert 2002).

In order to introduce maximum entropy modeling we present a stylized
problem in the manner of Birkin and Clarke (1988). Table (1) presents a data
situation in which there are two census tracts, with the goal to obtain the

distribution of specific subpopulations -- as determined by race and income --
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within these two tracts. There might be published data for the univariate
distribution of race and univariate distribution of income by census tract, but the
joint cross-tabulation of these attributes might not be published in order to protect
anonymity of respondents. Thus, the modeling goal is to estimate these joint
distributions.

Let w,. be the population in a given row (r), column (c¢) and tract (k). The ME

method estimates these missing values w,..;, through solving the following problem:

wT’C wT’C
max Z K log ( k)

(2) ok drck drck

subject to the pycnophylactic constraints

>, Wrek = row sum, for each tratd k,

> o Wrek = column sum, for each tract k,
and where d, are prior estimates. The prior estimates can be a constant value if no
other information exists, or they can reflect prior, ancillary information about the
joint distribution across attributes and/or location. For example, if the joint
distribution of income and race is known for the overall population, then this overall
distribution might be use as a prior estimate for each tract. This situation is
displayed in Table 1. This situation was faced by Birkin and Clarke (1988) and Wong
(1992), who obtained these global estimates from public use microdata. We adopt a
similar strategy for integrating public use microdata into dasymetric modeling.
Public use microdata are widely used across the social sciences, but are rarely
encountered in geographic research. Thus, the potential impacts of this research are
to provide techniques to "spatialize" household- and individual-level microdata and
to provide new opportunities for interaction between geography and the other

social sciences.

Penalized Maximum Entropy Dasymetric Modeling

A significant shortcoming of both the ME and regression weighted dasymetric
modeling approaches is the failure to account for uncertainties. If the population
data are uncertain, then the pycnophylactic constraints are too stringent. Models

should not force population estimates to exactly add back up to other estimates that

10
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are inherently imprecise. By relaxing the pycnophylactic constraints we incorporate
uncertainty into the ME dasymetric approach.

Following Birkin and Clarke (1988) and Wong (1992), we begin with individual-
level microdata, but we then place these data within the dasymetric modeling
framework, and allocate these individuals to target regions according to small area
census data as well as other ancillary spatial data layers. In survey sample data, each
sampled individual represents a group of unsampled individuals in the population
with the same characteristics. Let the target population w;; be the number of
individuals like sample record i in target region t. Let Pop,, be an uncertain estimate
of a population group k, and let Pop,, be the true, but unknown population count.
The index k is general; it could represent the total population in a tract, or in a
target region, or a specific subpopulation, such as a tract level count of children in
poverty, or even housing unit counts (not population counts) such as the count of

single family housing units in a block group.

The ideal pycnophylactic constraints would be Y;.¢, wi; = Popy. These
constraints are not feasible, however, because we do not know the true values Popy,.

Thus, we must explicitly account for the unknown error between the true and

estimated populations. We instead use the constraints: Y;;,c, Wi = Popy + e, where
ey is the positive or negative error between the estimated and the true population
count. These errors must be estimated in addition to the target populations w;;.
Population estimates can come from a variety sources. Census estimates for various
attributes and spatial resolutions can be used as one type of constraint. Other
constraints might come from estimates produced by the researcher. For example,
regression weighted dasymetric modeling requires the researcher to estimate a
regression between population layers and ancillary land cover layers. Predictions
from this regression could be another source of population estimates. This freedom
to include many different sources of data into dasymetric modeling is a significant
advancement. Any and all data layers that can be used to predict a population

attribute become feasible inputs to dasymetric modeling.

11
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These errors and constraints can be added to the ME model as follows: Choose

w;; and e, to

2

n Wit Wit e

maxz N d; log (dit> o Z 20’3
it k

(3)

subject to the relaxed pycnophylactic constraints

Z Wi = ﬁc;)k + ey, for each constraint k,
itek

where n is the size of the microdata sample, N is the population size, o is the

variance of the uncertainty ey, and d;; is a prior estimate of the population w;;. The

2
Ck_
term 2 20} is a penalty factor; it penalizes solutions with large errors e,. If a P-

MEDM solution exactly reproduces a population constrainti.e. ¥;,c, Wiz = Popy,

then the error e, will be zero, and there will be no penalty. However, if the solution

does not exactly reproduce a population constraint, i.e. ¥;,c, Wiz # Popy, then there
is an estimated error e, and the solution will be penalized for this discrepancy
between the dasymetric estimates and the corresponding (ancillary) population
estimates. This penalized Maximum Entropy framework, while new to geography,
has received considerable treatment in the machine learning literature; see, for
example, Chen and Rosenfeld (2000) and Dudik, Phillips and Schapire (2007).

The effect of the penalty term is to favor solutions with small errors e, and
preferably with zero errors. Thus, the P-MEDM will tend to be close to the ancillary
population estimates Pop,. But not all population data are of equal quality, however.
Some estimates are more reliable than others. The variance terms ¢ in (3)
accounts for the variation in data quality among the input data layers. If the variance
o2 of a population estimate is relatively small then the penalty on errors ¢, will be
great. Thus, the P-MEDM solution will tend to have high fidelity to those input data
that have a low variance. In contrast, if input data have a high variance, then the
penalty effect will be small. Large errors e;, will be permissible for these imprecise
population constraints. In the extreme case where the constraints are completely

imprecise, then the penalty effect will be zero; it will be as if the constraint doesn't

12
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exist. At the other extreme, when all the uncertainties are zero, then the P-MEDM
solution is identical to the ME solution. A similar use of the model variance o2 as a
qualitative measure for assessing the ancillary data was suggested by Mennis and
Hultgren (2006); here, we have formalized and quantified this process.

The adaptive property is convenient because it allows many different types of
ancillary data to be included. Data that are reliable will have a strong impact on the
solution. Data that are not reliable will have a slight impact on the solution. If the
solution can accommodate unreliable data without compromising the fit of reliable
data, then it will do so. If, however, the P-MEDM cannot fit unreliable data without
also compromising the fit of reliable data, then the reliable data take precedence.

The variance o7 must be known a priori, however, this is not usually a problem
because the variance of population estimates is often available. For instance, if
census tract- or block group-level summary tables are used as constraints, then the
variance o7 is directly obtained from the Margins of Error that the Census Bureau
publishes along with each estimate. Alternatively, if a population constraint is
obtained by regression, such as a regression between population data and land
cover data, then a prediction error variance o/ is provided by the regression model.
In contrast to regression weighted dasymetric modeling, which ignores the fact that
regression predictions are imprecise, or that the population data are themselves
imprecise, P-MEDM is able to incorporate these uncertainties and to even adapt to

variations in quality among the various input data layers.

A statistical motivation

In this section, we briefly describe a statistical motivation for the P-MEDM
model, and describe techniques for estimating the uncertainty in the final
dasymetric map product. The P-MEDM equation (3) has two parts; each of which is
part of a specific, well-known log likelihood model. The first part -

2 it vy 108()

model for the weights w;; (Jaynes 2003). The second term in the P-MEDM - the sum

, is proportional to the log-likelihood equation of a multinomial

13
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of square error terms 207 - s proportional to the log likelihood of a Gaussian
distribution. Together, these two terms represent the joint likelihood of the weights
wit and the errors ex.

Taken together, we see that the P-MEDM equation is equivalent to
simultaneously maximizing the likelihood of sample weights (which have a
multinomial distribution) as well as the likelihood of the error distribution of
ancillary population estimates (which are assumed to have a Gaussian distribution).

Since the P-MEDM problem is also a maximum likelihood problem, there are
many possible ways to specify confidence intervals for the output dasymetric map.
One way, based on the Likelihood Ratio, is conceptually simple, but computationally
expensive. For the likelihood ratio method, one evaluates the P-MEDM model
multiple times, once with the optimal w;; and errors ek, and then repeatedly with
alternative, sub-optimal values. Call the optimal log-likelihood value L, and the sub-
optimal value L. The likelihood ratio is the ratio L, /L. This ratio will have a y?
distribution (O’Brien 1992). For 95% confidence intervals of the weights, one can
try different suboptimal weights w;;, repeatedly recalculating the likelihood ratio
and searching for the weights that yield a likelihood ratio equal to the 2.5% and
97.5% values of a y? distribution; this is a computationally expensive process.

Another, simpler method, relies on approximating the confidence intervals by a
Gaussian distribution. For this method, we rely on the large sample approximation
that the second derivatives of a likelihood function are inversely proportional to the
covariance matrix of the model parameters (Schabenberger and Gotway 2004).
With the covariance matrix in hand, one can then obtain the standard errors of the
parameters, and the approximate 95% confidence intervals are obtained by the
usual method of calculating + 2standard errors. Many computational optimization
procedures automatically calculate the second derivatives. Thus, this method is
cheap to calculate; the P-MEDM only needs to be solved once and the final
information about the second derivatives at the solution is immediately used to

calculate the covariance matrix.

14
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Case Study

Data

We demonstrate the P-MEDM model with a case study that models the
population in Davidson County, Tennessee at various spatial and demographic
resolutions. Davidson County contains the city of Nashville and had a population of
about 600,000 persons in 2010. In order to demonstrate the wide applicability of
the P-MEDM data, we incorporate three different sources of data representing four

different levels of spatial resolution (Figure 2).
[Insert Figure 2 about here]

The first source of data are household-level microdata from the 5% Public Use
Microdata Sample (PUMS) of the 2005-2009 American Community Survey. These
microdata describe detailed characteristics of a 5% sample of individual
households. The spatial resolution of the PUMS, however, is very coarse. The
geography of the PUMS is a geographic unit called the Public Use Microdata Area
(PUMA). PUMAs are large in order to preserve the anonymity of respondents; each
PUMA contains at least 100,000 persons, and there are only 5 PUMAs in Davidson
County. While these data are not widely used in geography, they are widely used in
other social sciences. It is important that geographers develop tools that enable
them to engage with the methods and findings being produced in the other social
sciences; the P-MEDM enables the use of these data in spatial contexts.

The second source for data are summary tables from the 2005-2009 ACS
representing two different geographic scales: census tracts (which are nested within
PUMAs) and block groups (which are nested within tracts). These ACS summaries
are survey estimates from a 10-12 percent survey of the population and are not
actual population counts. For each ACS estimate, the Census Bureau also publishes a
90 percent Margin of Error (MOE), which is used to compute an error variance o

(US Census Bureau 2009). The MOE can be quite large for small population
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estimates, such as for some block groups and some small sub-populations. In
extreme cases, the coefficient of variation for an ACS estimate may exceed 100
percent. Such a low precision makes the use of these data dubious in traditional
dasymetric model. The P-MEDM, however naturally adapts to these differences in
quality; these estimates can be added to the model with very little effect on the
model. This reduces the burden on the researcher to subjectively evaluate which
data are "good enough to use" and which are not.

The final source of data used in this case study is the 2006 National Land Cover
Database (NLCD). The NLCD is raster grid with a spatial resolution of 30m covering
the entire United States, with each cell preclassified into a single land cover type.
Dasymetric models commonly use land cover data (Eicher and Brewer 2001;
Mennis and Hultgren 2006; Reibel and Agrawal 2007; Tapp 2010). Despite their
prevalence in dasymetric studies, land cover is not actually a direct estimate of any
population attribute. In all such dasymetric studies, a relation between the land
cover layer and population layer must be identified. We adapt the regression
weighted areal interpolation approach (Reibel and Agrawal 2007; Mennis and
Hultgren 2006) in order to derive ancillary population estimates Pop and error

variances o2 for each 30 meter pixel from the ancillary data.

Data processing and target zone construction

For this analysis, each land cover pixel was reclassified into six classes: five
classes that are potential residential areas (these are used as related ancillary
variables), and one non-residential class (this is used as a limiting ancillary
variable). The five land cover classes used as related ancillary variables are High-,
Medium- and Low-Intensity and Open Space, Developed land (NLCD classes 24, 23,
22 and 21), and Vegetated land (all pixels not classified as water, barren or
wetland). The underlying NLCD definitions for these classes indicate that residential
land use is possible (Fry et al. 2011). Water, barren land and wetland are grouped
into a single non-residential class since the given class definitions indicate that
residential land use is highly unlikely (we ignore the possibility, for example, of

residential houseboats). We then merged the NLCD pixels within census block
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groups in order to construct target regions. Thus, target regions for this analysis are
sub-block group regions with homogeneous NLCD classification; there are at most
six target regions within each block group.

In order to construct population constraints, the ACS data are processed by
selecting a subset of the summary tables and then further collapsing some
categories. The census tract and block group data tables that are used as ancillary
estimates are

e Total population and Number of housing units.

e  Number of housing units by building type (six categories: single family
detached, single family attached, a building with 2-9 units, one with 10-49
units, one with 50 units or more, and housing units not elsewhere classified).

e  Number of households by tenure status (two categories: Own or Rent).

e Number of households by household Income (in three categories: <=$25,000,
$25,001-50,000, and >=$50,001).

e  Number of households by race of householder (two categories: Black, All
Other).

e  Number of households by income and race (for a total of six categories).

e  Number of households by income and tenure (six categories).

e  Number of households by race and tenure (four categories).

These data constraints and their geographic scale are summarized in Table 2.

[Insert Table 2 about here.]

The Census Bureau publishes each of these tables at both the block group and
tract level, except for the Households by Income and Tenure and the Households by
Income and Race tables, which are only published down to the tract level. While it
might seem that the constraints at both the tract and the block group levels are
redundant, this is not the case. Even though the tract level estimates are equal to the
sum of block group estimates, the MOEs can be very different. The MOE of the sum
of block group estimates is at least as large as the MOE of the tract level estimate.
Thus, including the tract level estimates in addition to those for the block groups
allows the P-MEDM to maintain more fidelity to the tract level estimates.

The tract and block group summaries are already in the proper form that allows

—— ACS
us to use them as pycnophylactic constraints with error, i.e. Pop, = Pop;,  +ey,
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The related NLCD land cover data are not immediately usable as population
constraints, however; we must convert the land cover data into constraining
population estimates. Following the regression weighted dasymetric modeling
approach, we use regression techniques to specify a relationship between the land
cover and population layers and then calculate the associated standard errors of
prediction.

Many dasymetric studies have specified a linear regression relation between
land cover and population density. Logically, however, land cover is less related to
population density than it is to building type and building density. While this type of
relation was difficult to specify and use in previous dasymetric studies, it can be

easily used in the P-MEDM approach. We use a Poisson Generalized Linear Model to

relate housing unit counts to land cover type. Let HUE';) denote the number of
housing units of building type k in block group b and land cover c. We assume that
this quantity has a Poisson distribution. We then specify the following link between

expected number of housing units and the land cover:

EMHU) =" Areac 8

where E (HUI(,k)) is the expected number of housing units, Area,, is the land area of

block group b with land cover ¢, and ﬁc(k) is the regression coefficient measuring the
housing unit density for building type k in land cover class c. This characterizes a
Poisson Generalized Linear Model with additive link function (McCullagh and Nelder
1989). We have also added overdispersion (extra variance) to the model
specification. Overdispersion may arise from either uncertainty in measuring the
dependent variable, which is certainty present for these data measured by the ACS,
or from model misspecification, or from measurement error in the land cover
classification, which is certainly present as well.

Once this regression is fitted for each building type k, we construct estimates
HU® for each target region. Thus, the regression produces a geographic data layer
containing housing unit predictions for each building type and target region. In

addition to producing a regression prediction, the regression also produces a
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prediction variance; this is the o2 that is needed for P-MEDM. Thus, we use
regression to construct housing unit estimates for each target region, which are then
added to the P-MEDM constraints, along with the constraining tract and block group
estimates that are provided directly by the Census Bureau.

An important note to make is that, while we have explicitly quantified the
prediction accuracy of the land cover data, we have not explicitly quantified the
classification error of the NLCD. The NLCD is itself a complex dataset, and there is
an extensive literature on uncertainty and error in NLCD classifications (Wickham
etal 2010; 2013). This classification error is especially problematic in rural areas,
where isolated housing units are often misclassified as Vegetated. This type of error
is not explicitly incorporated in the P-MEDM. It is implicitly incorporated, however,
as the misclassification error will reduce the prediction accuracy of the land cover
data, and thus increase the prediction variance o2 of these P-MEDM constraints.
More accurate land cover data would presumably lead to higher prediction
accuracies. This misclassification problem is a common impediment to dasymetric
modeling, is subject to intensive research in the land cover/ remote sensing

community and can only be solved by improved detection procedures.

Results

In this section, we present a variety of different products and analyses that are
made possible by the P-MEDM technique. Once weights w;; are obtained, they can

be utilized in a variety of different ways.

Dasymetric mapping

First, it is possible to duplicate traditional dasymetric modeling. The sum };; w;;
will produce population estimates for each target region. Since we have the
microdata, with all of their individual- and household-level attributes, it is possible

to obtain dasymetric maps for various subpopulations as well. Let k be any

subpopulation of interest, then ), w;; represents the subpopulation estimate for
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target region t. Figure 3 displays both a dasymetric map for total population, as well

as low income black households, in Davidson County.

[Insert Figure 3 about here]

The P-MEDM makes it possible, with one optimization, to produce many
different types of dasymetric estimates at the target zone scale. This contrasts with
existing practice, in which the dasymetric model must be independently fitted for
each estimate. Eicher and Brewer (2001), for example fit dasymetric models
separately for total population, Hispanic persons, and number of children. The P-
MEDM approach can provide these different estimates simultaneously.
Furthermore, the P-MEDM estimates are internally consistent in the sense that
dasymetric estimates for sub-populations will add up to the dasymetric estimates

for larger populations.

Small Area estimation

The P-MEDM also allows the creation of new small area estimates for use in
mapping and analysis. Consider, for example, an analysis of racial disparities in rates
of homeownership across neighborhoods. Ideally, such an analysis, would control
for the confounding effects of income. In order to do this, we need neighborhood-
level estimates of the trivariate table containing tenure (own versus rent), race, and
income. This trivariate table is not produced by the Census Bureau. The Census
produces each of the bivariate tables for census tracts, but not the trivariate table.
Researchers might use the PUMS to construct the trivariate table for each PUMA, but
PUMAs are so large that they are inadequate proxies to assess any neighborhood
effects.

This type of estimate is possible with the P-MEDM approach. Using the
estimated weights w;;, we can construct the necessary trivariate tables for each tract
(or block group, or target region) and then directly calculate the homeownership
rate for each region. Figure 4 displays maps of the estimated home ownership rates

for each tract, separated by race of the householder and household income. These
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maps are not possible from the ACS summary tables. Similarly, if the PUMS were
used to estimate these homeownership rates, these rates would have to be constant
across all tracts within the same PUMA. The P-MEDM clearly shows that there is
likely spatial variation in these homeownership rates across the county. In this way,
the P-MEDM technique allows richer mapping and analytical capabilities than

currently exist.

[Insert Figure 4 about here]

Uncertainty analysis

Finally, we demonstrate the ability of the P-MEDM to produce estimates of
uncertainty for the output maps and estimates. For the homeownership analysis in
the previous section, we might consider the odds ratio of homeownership between
black and white households, for households with incomes between $25,001 and
$50,000. Using the estimated data that went into Figure 4, we could produce the
single best estimate of the odds ratio for each tract. But for scientifically robust
analysis, it is necessary to evaluate the uncertainty of these estimates as well.

This is possible with the P-MEDM approach. Using the second derivatives of the
likelihood equation and the covariance function, we have simulated 100 different
sets of weights w;i™ For each simulation, we aggregate the weights and calculate the
odds ratio for each simulation. These simulations give us a Monte Carlo estimate of
the statistical uncertainty (see, for example, Wood (2006, pp. 246-7) for discussion
of this technique in the context of penalized generalized linear models).

Figure 5 displays box plots of the simulated odds ratio for each census tract.
Each of these estimates is in some sense consistent with the input data, subject to
the inherent uncertainties in both input data, as well as in the maximum
entropy/maximum likelihood estimating procedure. Each column of the figure
represents a different census tract, with the tracts sorted from that tract with the
highest proportion of white households on the left to that tract with the highest

proportion of black households on the right. For households earning $25,001 to
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$50,000, we see clearly that black households are more likely to own a home in
predominantly black neighborhoods than are white households, and that this is the
opposite in predominantly white neighborhoods. Also, in a majority of tracts, black
households are less likely to own a home than are white households (more tracts
have a an odds ratio less than 1.0 than have an odds ratio above 1.0). Even

considering the error bars, this trend is evident and robust.

[Insert Figure 5 about here]

[t is important to emphasize that not all tracts are reliably estimated. The error
bars can be quite large. Taken individually, many of the tract-level estimates might
have been deemed unreliable or unusable. A choropleth plot, for instance, might not
have robust class breaks. This uncertainty analysis, however, allows researchers to
make this determination on their own. This is not possible with current dasymetric
techniques. Despite the high uncertainty of individual estimates, we can still see
from Figure 5 that robust scientific generalizations are possible. Even with many
census tracts imprecisely estimated, there is a clearly identified relationship
between the odds ratio of homeownership and the racial composition of a census
tract. This type of uncertainty information is important since it allows researchers
to objectively evaluate the quality of dasymetric estimates. This evaluation of quality
will vary by researcher and by data use. With the P-MEDM estimate, researchers are
provided with sufficient information to undertake such an evaluation, even if they

know very little about dasymetric or small area estimation techniques.

Discussion

This article has introduced a new methodology for dasymetric modeling. This
model is able to account for information about the quality of ancillary data with
regard to downscaling population estimates. Previous literature has focused on
spatial accuracy, noting that finer resolution population data are preferred to coarse

resolution data. The results here suggest a cautionary note that does not exist in the
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previous literature; data with finer spatial resolution are often less accurate. For
example, block groups are less accurate than tracts. Thus, while we expected the
tract level data to be redundant given the block group data, this was not the case;
the tract level data were more precise than the sum of the block group data.
Similarly, data with even higher resolution, such as land cover have even less
accurate information about population. Future developments in dasymetric
modeling should consider more fully the multidimensional nature of tradeoffs
between different data sources and more fully acknowledge tradeoffs between
spatial resolution and data accuracy.

The P-MEDM model does have some potential limitations. First and foremost,
the model requires an estimate of variance for each ancillary variable. This may not
be as challenging as it first seems, however. For example, census data in the United
States are published with estimates of the Margin of Error. Secondly, ancillary data
are important only insofar as they are able to predict population well. For example,
the quality of the land cover class is only indirectly important, what is directly
relevant is how well the available land cover data can predict the population
surface. This can be determined by regression techniques, regardless of the quality
of the land cover data. More precise land cover data will have higher predictive
power, but it is the predictive power that is the directly relevant measure of data
quality, not the quality of the land cover classification. Whatever this predictive fit
between the ancillary data and the population distribution is, the P-MEDM will
properly find the balance between the different ancillary data inputs. It is possible
that there are situations in which it is still difficult to quantify the uncertainty of a
particular ancillary data layer, but we believe that the framework described here is
general enough to incorporate many different types of data.

A second limitation of the P-MEDM is that it does not incorporate spatial
autocorrelation of population data as ancillary component such as in smoothing
techniques that are motivated by the concept of areal interpolation. Integrating
smoothing and the described P-MEDM is difficult because traditional statistical
smoothing methods rely on a Gaussian assumption, which is incompatible with the

log-linear assumption used here. The log-linear assumption is convenient because it
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is guaranteed to produce non-negative population estimates. This is not true, for
example, with common geostatistical techniques, where ad hoc fixes are sometimes
needed to enforce non-negativity (Yoo and Kyriakidis 2006). Additionally,
geostatistical models are tailored to specific sub-populations; there is no guarantee,
for instance, that the spatial structure of low-income Black households is the same
as the spatial structure of other household types. The P-MEDM approach is
attractive because it can model all subpopulations found in the microdata
simultaneously. Nonetheless, explicit incorporation of spatial autocorrelation
should enhance the predictive ability of the P-MEDM, and further research will
investigate this possibility.

Another limitation is that we have not used explicitly spatial regression models
in the modeling of ancillary data. We have assumed that the errors in the constraint
equations are uncorrelated. This, however, is a limitation of our implementation
and not of the P-MEDM. One way to incorporate spatial autocorrelation among the
constraints would be to change the penalties to include the entire inverse
covariance matrix of the constraints. In essence, rather than assuming that the
penalties derive from an approximating Gaussian distribution, this would instead
treat the errors as if derived from a multivariate Gaussian distribution. At an
intuitive level, this modification would decluster, or decorrelate, the constraints,
giving more weight to the constraints that are precise or that are relatively
uncorrelated with other constraints. For ancillary data that are included through a
regression relationship, as the land cover data are here, it would be possible to use a
linear or nonlinear spatial regression model, and account for spatial autocorrelation
explicitly. Incorporating the spatial autocorrelation of small area census data will be
more difficult, however, as the spatial structure of survey sampling errors is

relatively understudied. These are subjects for further research.

Summary

We have developed a new conceptual framework for dasymetric modeling

called the Penalized Maximum Entropy Dasymetric Model (P-MEDM). This P-MEDM
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addresses four problems that have challenged recent dasymetric modeling
approaches, those of:

1. Accounting for uncertainty in the dasymetric output,

2. Accounting for uncertainty in the relationship between ancillary variables and
the target variables,

3. Accounting for uncertainty in the population data themselves, and
4. Simultaneously producing estimates for multiple subpopulations.

The P-MEDM technique is able to integrate data with disparate levels of spatial
and demographic resolution in order to construct richer and more complete
population models at finer spatial scales. The penalizing mechanism allows the P-
MEDM to adjust automatically to various input data having different levels of
precision. This property will allow future dasymetric modeling efforts to consider
multiple ancillary data sources, regardless of their quality. This reduces the need
for modelers to subjectively evaluate which ancillary data are “good enough” and
which are not. The P-MEDM model is also able to quantify the uncertainty of the
final product, which has been largely ignored to date. This is an important factor in
making dasymetric techniques accessible to other social scientists and to support
new applications in other disciplines. The quantification of statistical uncertainty
will make it possible for potential users to objectively evaluate the output of the
dasymetric model, even if they do not fully understand the dasymetric model itself.
Researchers regularly use data for which they do not fully understand the
estimation procedure, but in order for them to evaluate their analysis, it is crucial
that they are given the sufficient information to determine the quality of these data.

As demonstrated in the case study with the P-MEDM approach, it is possible to
produce new dasymetric data or modeling tools that are usable by the general social
science research community. Survey weighting, as used in this research, makes it
possible for users to effectively analyze a wide variety of attributes. This article
proposes dasymetric modeling as one effective strategy to producing general
purpose spatial microdata, acceptable for use in a wide variety of research

applications.
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All computations in this article were produced in the R statistical computing
environment, and programs and data are available from the corresponding author

upon request.
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Table Captions
Table 1. A simplified scenario involving tract-level summary data and region-
wide joint distributions. Missing cell values are denoted by a question mark.

Maximum Entropy can estimate these missing values.

Table 2. Listing of calibration constraints by geographic detail and data source
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Table 1
Tract 1 Tract 2 Region Total
Own Rent Total Own Rent Total Own Rent Total
Black ? ? 5 ? ? 10 10 5 15
White ? ? 35 ? ? 25 10 50 60
Total 10 30 40 10 25 35 20 55 75
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1 Table 2

2
Constraint Tract Block Group NLCD Region Source
Total Pop ACS
Housing Units X X ACS
Income X X ACS
Tenure X X ACS
Race X X ACS
Tenure X Race X X ACS
Income X Tenure X ACS
Income X Race X ACS
Building Type X X ACS
Building Type X Regression(ACS and NLCD)

3
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Figure Captions

Figure 1. Dasymetric models utilize ancillary data in order to produce
population estimates at finer resolution. As shown here, coarse resolution
population data are combined with a gridded land cover layer in order to produce a
gridded estimate of population. This article presents a method to track uncertainty

from the input layers to the output map.

Figure 2. Davidson county illustrated using data at different spatial scales.
Davidson county has 5 PUMAs (thick black line), 144 census tracts (thin black lines)
and 467 block groups (grey lines). The base layer is a hill-shaded representation of
the 2006 National Land Cover Database, residential classes in red shades, and

vegetated classes in green.

Figure 3. Dasymetric maps for total population (right) and for persons living in
a home with a Black householder and household income less than $25,001 (left).
These dasymetric estimates were produced using the exact same model, as
described in the text. Other population characteristics can be similarly modeled and

mapped.

Figure 4. Maps of tract-level homeownership rates, separated by race of
householder (varying across columns) and household income (varying across rows).
These estimates are not published by the Census Bureau and have been estimated

according to the P-MEDM as described in the text.

Figure 5. Boxplots of simulated odds ratios for each census tract. The odds
ratios are those of homeownership for black households relative to white
households, each with household incomes between $25,001 and $50,000. Odds
ratios below 1.0 indicate that black households are less likely to own their home

than are white households.
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